ПРАВИЛА ПОСТРОЕНИЯ ГРАФИКОВ ФУНКЦИЙ у = ах2 + п и у = а (х – т)2

Правила построения графиков функций у = ах2 + п и у = а (х – т)2
Цели: изучить правила построения графиков функций у = ах2 + п и у = а (х – т)2; формировать умение схематически изображать графики этих функций.
Ход урока
I. Организационный момент.
II. Устная работа.
Для каждого из графиков, изображенных на рисунке, найдите соответствующую функцию.

у = 1,7х2; у = ;
у = ; у = 0,3х2.
III. Объяснение нового материала.
Объяснение проводить согласно пункту учебника. При выводе правил построения графиков функций у = ах2 + п и у = а (х – т)2 особое внимание обратить на то, почему графики этих функций получаются путем параллельного переноса графика функции у = ах2.
Так, если сопоставить графики функции у = ах2 и у = ах2 + п, то замечаем, что при одних и тех же значениях аргумента значения функции у = ах2 + п на п больше соответствующих значений функции у = ах2. Именно поэтому график функции у = ах2 + п может быть получен из графика функции у = ах2 с помощью параллельного переноса вдоль оси ОУ.
Если сравнивать функции у = ах2 и у = а (х – т)2, то можно заметить следующее: чтобы значение функции у = а (х – т)2 было равно значению функции у = ах2, нужно для первой функции взять значение аргумента на т больше, чем для второй. Поэтому график функции у = а (х – т)2 может быть получен из графика функции у = ах2 с помощью параллельного переноса вдоль оси ОХ.
Рассуждая подобным образом, можно сделать вывод о том, что полученные правила справедливы и для построения графиков произвольных функций у = f (х) + п и у = f (х – т) из графика функции у = f (х).
IV. Формирование умений и навыков.
На этом уроке основное внимание следует уделить схематическому построению графика функции у = а (х – т)2 + п. Построение каждого графика учащиеся должны осуществлять по следующей схеме:
– нахождение вершины параболы;
– вывод о направлении ветвей параболы;
– вывод о внешней форме параболы (более «широкая» или «узкая» по сравнению с у = х2).
Упражнения:
1. № 106.
2. По данной формуле квадратичной функции ответьте на вопросы:
– каковы вершины параболы;
– куда направлены ветви параболы;
– шире или эже будет эта парабола по сравнению с у = х2?
а) у = ; д) у = 6 (х + 1,7)2 – 4;
б) у = 3х2 – 2; е) у = ;
в) у = (х + 4)2 + 5; ж) у = ;
г) у = ; е) у = –1,8 (х – 4)2 – 3.
3. Изобразите схематически график функции:
а) у = –3 (х + 1)2 – 2;
в) у = ;

б) у = ;
г) у = 2,1 (х – 5)2 – 1.

4. На рисунке изображены графики функций:
а) у = –(х – 2)2;
г) у = (х + 1)2 – 3;
в) у = х2 + 1;
г) у = –(х + 2)2 + 3.


Для каждой из функций укажите номер соответствующего графика.
V. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Что является графиком функций у = ах2 + п и у = а (х – т)2?
– Как может быть получен график функции у = ах2 + п из графика функции у = ах2?
– Как может быть получен график функции у = а (х – т)2 из графика функции у = ах2?
– Найдите координаты вершины параболы у = 2(х + 3)2 – 1.
– Каковы координаты вершины параболы у = а (х – т)2 + п?
Домашнее задание:
1. № 110, № 111, № 116.
2. Сделать из картона шаблоны парабол у = х2, у = 2х2 и у = х2.


Рисунок 13Рисунок 10Рисунок 8Рисунок 6Рисунок 5Рисунок 415

Приложенные файлы

  • doc file21.doc
    урок алгебры в 9 классе
    Размер файла: 66 kB Загрузок: 7