Дидактическое пособие по иностранному языку для студентов специальностей 13.02.11 и 08.02.09


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ХАБАРОВСКОГО КРАЯ
Краевое государственное автономное
профессиональное образовательное учреждение
«Губернаторский авиастроительный колледж г. Комсомольска-на-Амуре (Межрегиональный центр компетенций)»
ДИДАКТИЧЕСКОЕ ПОСОБИЕ
Сборник спец. текстов для студентов III-IV курсов специальностей
13.02.11 «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования»,
08.02.09 - Монтаж, наладка и эксплуатация электрооборудования промышленных и гражданских зданий
ОГСЭ.03 «Иностранный язык»

Разработчик: Тургенева Наталья Константиновна
преподаватель КГА ПОУ
«Губернаторский авиастроительный колледж
г. Комсомольска-на-Амуре
(Межрегиональный центр компетенций)»
первой категори
2016 г.Content
Electricity 4
Electric field 5
Definition 5
Time-varying fields 7
Properties (in electrostatic) 8
Energy in the electric field 9
Parallels between electrostatics and gravity 9
History 10
Electric power 13
Mathematics of electric power 13
Electric charge 15
Electric current 16
Electric potential20
Electromagnetism 21
Electric circuit 23
Production and uses 24
Electricity and the natural world 26
Electrical phenomena in nature 27
Electricity in popular culture 27
Electrical engineering 28
Modern developments 31
Education 31
Practicing engineers 32
Tools and work 33
Sub-disciplines 34
Electric motor 36
Categorization of electric motors 38
DC motors 41
Universal motors 43
AC motors 44
Torque motors 45
Slip ring 46
Stepper motors 46
Linear motors 47
Doubly-fed electric motor 47
Singly-fed electric motor 47
Nanotube nanomotors 48
Electronics 49
Electronic engineering 49
Terminology 50
History of electronic engineering 50
Early electronics 51
Typical electronic engineering undergraduate syllabus 54
Modern electronic engineering 57
Subfields 58
Microelectronics 60
Electronic components 64
Original Ampere’s circuital law 73
Coulomb’s law 80
Electricity

Lightning is one of the most dramatic effects of electricity
Electricity (from the Greek word ἥλεκτρον, (elektron), meaning amber, and finally from New Latin ēlectricus, "amber-like") is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such as lightning and static electricity, but in addition, less familiar concepts such as the electromagnetic field and electromagnetic induction.
In general usage, the word 'electricity' is adequate to refer to a number of physical effects. However, in scientific usage, the term is vague, and these related, but distinct, concepts are better identified by more precise terms:
Electric charge – a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is influenced by, and produces, electromagnetic fields.
Electric current – a movement or flow of electrically charged particles, typically measured in amperes.
Electric field – an influence produced by an electric charge on other charges in its vicinity.
Electric potential – the capacity of an electric field to do work, typically measured in volts.
Electromagnetism – a fundamental interaction between the magnetic field and the presence and motion of an electric charge.
Electrical phenomena have been studied since antiquity. However, the modern understanding of these phenomena relies largely on a series of scientific advances in the seventeenth and eighteenth centuries. In the late nineteenth century, engineers were able to put electricity to industrial and residential use. The rapid expansion in electrical technology transformed society. Electricity's extraordinary versatility as a source of energy means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. The backbone of modern industrial society is, and for the foreseeable future can be expected to remain, the use of electrical power.
Electric field
In physics, the space surrounding an electric charge or in the presence of a time-varying magnetic field has a property called an electric field (that can also be equated to electric flux density). This electric field exerts a force on other electrically charged objects. The concept of an electric field was introduced by Michael Faraday.
The electric field is a vector field with SI units of newtons per coulomb (N C−1) or, equivalently, volts per metre (V m−1). The SI base units of the electric field are kg•m•s-3•A-1. The strength of the field at a given point is defined as the force that would be exerted on a positive test charge of +1 coulomb placed at that point; the direction of the field is given by the direction of that force. Electric fields contain electrical energy with energy density proportional to the square of the field intensity. The electric field is to charge as gravitational acceleration is to mass and force density is to volume.
A moving charge has not just an electric field but also a magnetic field, and in general the electric and magnetic fields are not completely separate phenomena; what one observer perceives as an electric field, another observer in a different frame of reference perceives as a mixture of electric and magnetic fields. For this reason, one speaks of "electromagnetism" or "electromagnetic fields." In quantum mechanics, disturbances in the electromagnetic fields are called photons, and the energy of photons is quantized.

Definition
A stationary charged particle in an electric field experiences a force proportional to its charge given by the equation

where the magnetic flux density is given by

and where is the Coulomb force. (See the section below).
Electric charge is a characteristic of some subatomic particles, and is quantized when expressed as a multiple of the so-called elementary charge e. Electrons by convention have a charge of -1, while protons have the opposite charge of +1. Quarks have a fractional charge of −1/3 or +2/3. The antiparticle equivalents of these have the opposite charge. There are other charged particles.
In general, same-sign charged particles repel one another, while different-sign charged particles attract. This is expressed quantitatively in Coulomb's law, which states the magnitude of the repelling force is proportional to the product of the two charges, and weakens proportionately to the square of the distance.
The electric charge of a macroscopic object is the sum of the electric charges of its constituent particles. Often, the net electric charge is zero, since naturally the number of electrons in every atom is equal to the number of the protons, so their charges cancel out. Situations in which the net charge is non-zero are often referred to as static electricity. Furthermore, even when the net charge is zero, it can be distributed non-uniformly (e.g., due to an external electric field), and then the material is said to be polarized, and the charge related to the polarization is known as bound charge (while the excess charge brought from outside is called free charge). An ordered motion of charged particles in a particular direction (in metals, these are the electrons) is known as electric current. The discrete nature of electric charge was proposed by Michael Faraday in his electrolysis experiments, then directly demonstrated by Robert Millikan in his oil-drop experiment.
The SI unit for quantity of electricity or electric charge is the coulomb, which represents approximately 1.60 × 1019 elementary charges (the charge on a single electron or proton). The coulomb is defined as the quantity of charge that has passed through the cross-section of an electrical conductor carrying one ampere within one second. The symbol Q is often used to denote a quantity of electricity or charge. The quantity of electric charge can be directly measured with an electrometer, or indirectly measured with a ballistic galvanometer.
Formally, a measure of charge should be a multiple of the elementary charge e (charge is quantized), but since it is an average, macroscopic quantity, many orders of magnitude larger than a single elementary charge, it can effectively take on any real value. Furthermore, in some contexts it is meaningful to speak of fractions of a charge; e.g. in the charging of a capacitor.
If the charged particle can be considered a point charge, the electric field is defined as the force it experiences per unit charge:

where
is the electric force experienced by the particle
q is its charge
is the electric field wherein the particle is located
Taken literally, this equation only defines the electric field at the places where there are stationary charges present to experience it. Furthermore, the force exerted by another charge q will alter the source distribution, which means the electric field in the presence of q differs from itself in the absence of q. However, the electric field of a given source distribution remains defined in the absence of any charges with which to interact. This is achieved by measuring the force exerted on successively smaller test charges placed in the vicinity of the source distribution. By this process, the electric field created by a given source distribution is defined as the limit as the test charge approaches zero of the force per unit charge exerted thereupon.

This allows the electric field to be dependent on the source distribution alone.
As is clear from the definition, the direction of the electric field is the same as the direction of the force it would exert on a positively-charged particle, and opposite the direction of the force on a negatively-charged particle. Since like charges repel and opposites attract (as quantified below), the electric field tends to point away from positive charges and towards negative charges. Time-varying fields
Charges do not only produce electric fields. As they move, they generate magnetic fields, and if the magnetic field changes, it generates electric fields. A changing magnetic field gives rise to an electric field,

which yields Faraday's law of induction,

where
indicates the curl of the electric field,
represents the vector rate of decrease of magnetic field with time.
This means that a magnetic field changing in time produces a curled electric field, possibly also changing in time. The situation in which electric or magnetic fields change in time is no longer electrostatics, but rather electrodynamics or electromagnetics.
Properties (in electrostatics)

Illustration of the electric field surrounding a positive (red) and a negative (green) charge.
According to equation (1) above, electric field is dependent on position. The electric field due to any single charge falls off as the square of the distance from that charge.
Electric fields follow the superposition principle. If more than one charge is present, the total electric field at any point is equal to the vector sum of the respective electric fields that each object would create in the absence of the others.

If this principle is extended to an infinite number of infinitesimally small elements of charge, the following formula results:

where
ρ is the charge density, or the amount of charge per unit volume.
The electric field at a point is equal to the negative gradient of the electric potential there. In symbols,

where
φ(x,y,z) is the scalar field representing the electric potential at a given point.
If several spatially distributed charges generate such an electric potential, e.g. in a solid, an electric field gradient may also be defined.
Considering the permittivity of a material, which may differ from the permittivity of free space , the electric displacement field is:

Energy in the electric field
The electric field stores energy. The energy density of the electric field is given by

where
is the permittivity of the medium in which the field exists
is the electric field vector.
The total energy stored in the electric field in a given volume V is therefore

where
dV is the differential volume element.
Parallels between electrostatics and gravity
Coulomb's law, which describes the interaction of electric charges:

is similar to the Newtonian gravitation law:

This suggests similarities between the electric field E and the gravitational field g, so sometimes mass is called "gravitational charge".
Similarities between electrostatic and gravitational forces:
Both act in a vacuum.
Both are central and conservative.
Both obey an inverse-square law (both are inversely proportional to square of r).
Both propagate with finite speed c.
Differences between electrostatic and gravitational forces:
Electrostatic forces are much greater than gravitational forces (by about 1036 times).
Gravitational forces are attractive for like charges, whereas electrostatic forces are repulsive for like charges.
There are no negative gravitational charges (no negative mass) while there are both positive and negative electric charges. This difference combined with previous implies that gravitational forces are always attractive, while electrostatic forces may be either attractive or repulsive.
Electric charge is invariant while relativistic mass isn't

History

Thales, the earliest researcher into electricity
Main articles: History of electromagnetism and History of electrical engineeringSee also: Etymology of electricity
Long before any knowledge of electricity existed people were aware of shocks from electric fish. Ancient Egyptian texts dating from 2750 BC referred to these fish as the "Thunderer of the Nile", and described them as the "protectors" of all other fish. They were again reported millennia later by ancient Greek, Roman and Arabic naturalists and physicians. Several ancient writers, such as Pliny the Elder and Scribonius Largus, attested to the numbing effect of electric shocks delivered by catfish and torpedo rays, and knew that such shocks could travel along conducting objects. Patients suffering from ailments such as gout or headache were directed to touch electric fish in the hope that the powerful jolt might cure them. Possibly the earliest and nearest approach to the discovery of the identity of lightning, and electricity from any other source, is to be attributed to the Arabs, who before the 15th century had the Arabic word for lightning (raad) applied to the electric ray.]
That certain objects such as rods of amber could be rubbed with cat's fur and attract light objects like feathers was known to ancient cultures around the Mediterranean. Thales of Miletos made a series of observations on static electricity around 600 BC, from which he believed that friction rendered amber magnetic, in contrast to minerals such as magnetite, which needed no rubbing. Thales was incorrect in believing the attraction was due to a magnetic effect, but later science would prove a link between magnetism and electricity. According to a controversial theory, the Parthians may have had knowledge of electroplating, based on the 1936 discovery of the Baghdad Battery, which resembles a galvanic cell, though it is uncertain whether the artifact was electrical in nature.

Benjamin Franklin conducted extensive research on electricity in the 18th century
Electricity would remain little more than an intellectual curiosity for millennia until 1600, when the English physician William Gilbert made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber. He coined the New Latin word electricus ("of amber" or "like amber", from ήλεκτρον [elektron], the Greek word for "amber") to refer to the property of attracting small objects after being rubbed. This association gave rise to the English words "electric" and "electricity", which made their first appearance in print in Thomas Browne's Pseudodoxia Epidemica of 1646.]
Further work was conducted by Otto von Guericke, Robert Boyle, Stephen Gray and C. F. du Fay. In the 18th century, Benjamin Franklin conducted extensive research in electricity, selling his possessions to fund his work. In June 1752 he is reputed to have attached a metal key to the bottom of a dampened kite string and flown the kite in a storm-threatened sky. He observed a succession of sparks jumping from the key to the back of his hand, showing that lightning was indeed electrical in nature.
In 1791 Luigi Galvani published his discovery of bioelectricity, demonstrating that electricity was the medium by which nerve cells passed signals to the muscles. Alessandro Volta's battery, or voltaic pile, of 1800, made from alternating layers of zinc and copper, provided scientists with a more reliable source of electrical energy than the electrostatic machines previously used. The recognition of electromagnetism, the unity of electric and magnetic phenomena, is due to Hans Christian Ørsted and André-Marie Ampère in 1819-1820; Michael Faraday invented the electric motor in 1821, and Georg Ohm mathematically analysed the electrical circuit in 1827.
While it had been the early 19th century that had seen rapid progress in electrical science, the late 19th century would see the greatest progress in electrical engineering. Through such people as Nikola Tesla, Thomas Edison, George Westinghouse, Ernst Werner von Siemens, Alexander Graham Bell and Lord Kelvin, electricity was turned from a scientific curiosity into an essential tool for modern life, becoming a driving force for the Second Industrial Revolution.Electric power
Electric power is defined as the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt.

Electrical power is distributed via cables and electricity pylons like these in Brisbane, Australia.
When electric current flows in a circuit, it can transfer energy to do mechanical or thermodynamic work. Devices convert electrical energy into many useful forms, such as heat (electric heaters), light (light bulbs), motion (electric motors), sound (loudspeaker) or chemical changes. Electricity can be produced mechanically by generation, or chemically, or by direct conversion from light in photovoltaic cells, also it can be stored chemically in batteries.

Mathematics of electric power
Circuits
Electric power, like mechanical power, is represented by the letter P in electrical equations. The term wattage is used colloquially to mean "electric power in watts."
Direct current
In direct current resistive circuits, instantaneous electrical power is calculated using Joule's Law, which is named after the British physicist James Joule, who first showed that heat and mechanical energy were interchangeable. Joule's Law is
P = VI,
where P is the electric power, V the potential difference, and I the electric current.
Joule's law can be combined with Ohm's law (V = RI) to produce two more equations:
P = I2R,
and

where R is the electric resistance.
Alternating current
In alternating current circuits, energy storage elements such as inductance and capacitance may result in periodic reversals of the direction of energy flow. The portion of power flow that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as real power (also referred to as active power). That portion of power flow due to stored energy, that returns to the source in each cycle, is known as reactive power.

Power triangle The components of AC powerThe relationship between real power, reactive power and apparent power can be expressed by representing the quantities as vectors. Real power is represented as a horizontal vector and reactive power is represented as a vertical vector. The apparent power vector is the hypotenuse of a right triangle formed by connecting the real and reactive power vectors. This representation is often called the power triangle. Using the Pythagorean Theorem, the relationship among real, reactive and apparent power is:
(apparent power)2 = (real power)2 + (reactive power)2
Real and reactive powers can also be calculated directly from the apparent power, when the current and voltage are both sinusoids with a known phase angle between them:
(real power) = (apparent power) * cos(theta)
(reactive power) = (apparent power) * sin(theta)
The ratio of real power to apparent power is called power factor and is a number always between 0 and 1.
In space
Electrical power flows wherever electric and magnetic fields exist in the same place. The simplest example of this is in electrical circuits, as the preceding section showed. In the general case, however, the simple equation P = IV must be replaced by a more complex calculation, the integral of the vector cross-product of the electrical and magnetic fields over a specified area, thus:

The result is a scalar since it is the surface integral of the Poynting vector.
Electric charge
Electric charge is a property of certain subatomic particles, which gives rise to and interacts with, the electromagnetic force, one of the four fundamental forces of nature. Charge originates in the atom, in which its most familiar carriers are the electron and proton. It is a conserved quantity, that is, the net charge within an isolated system will always remain constant regardless of any changes taking place within that system. Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as a wire. The informal term static electricity refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other.

Charge on a gold-leaf electroscope causes the leaves to visibly repel each other
The presence of charge gives rise to the electromagnetic force: charges exert a force on each other, an effect that was known, though not understood, in antiquity. A lightweight ball suspended from a string can be charged by touching it with a glass rod that has itself been charged by rubbing with a cloth. If a similar ball is charged by the same glass rod, it is found to repel the first: the charge acts to force the two balls apart. Two balls that are charged with a rubbed amber rod also repel each other. However, if one ball is charged by the glass rod, and the other by an amber rod, the two balls are found to attract each other. These phenomena were investigated in the late eighteenth century by Charles-Augustin de Coulomb, who deduced that charge manifests itself in two opposing forms, leading to the well-known axiom: like-charged objects repel and opposite-charged objects attract.
The force acts on the charged particles themselves, hence charge has a tendency to spread itself as evenly as possible over a conducting surface. The magnitude of the electromagnetic force, whether attractive or repulsive, is given by Coulomb's law, which relates the force to the product of the charges and has an inverse-square relation to the distance between them. The electromagnetic force is very strong, second only in strength to the strong interaction, but unlike that force it operates over all distances. In comparison with the much weaker gravitational force, the electromagnetic force pushing two electrons apart is 1042 times that of the gravitational attraction pulling them together.]
The charge on electrons and protons is opposite in sign, hence an amount of charge may be expressed as being either negative or positive. By convention, the charge carried by electrons is deemed negative, and that by protons positive, a custom that originated with the work of Benjamin Franklin. The amount of charge is usually given the symbol Q and expressed in coulombs; each electron carries the same charge of approximately −1.6022×10−19 coulomb. The proton has a charge that is equal and opposite, and thus +1.6022×10−19  coulomb. Charge is possessed not just by matter, but also by antimatter, each antiparticle bearing an equal and opposite charge to its corresponding particle.]
Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope, which although still in use for classroom demonstrations, has been superseded by the electronic electrometer.
Electric current
The movement of electric charge is known as an electric current, the intensity of which is usually measured in amperes. Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current.
By historical convention, a positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current. The motion of negatively-charged electrons around an electric circuit, one of the most familiar forms of current, is thus deemed positive in the opposite direction to that of the electrons.] However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation.

An electric arc provides an energetic demonstration of electric current
The process by which electric current passes through a material is termed electrical conduction, and its nature varies with that of the charged particles and the material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a conductor such as metal, and electrolysis, where ions (charged atoms) flow through liquids. While the particles themselves can move quite slowly, sometimes with an average drift velocity only fractions of a millimetre per second,] the electric field that drives them itself propagates at close to the speed of light, enabling electrical signals to pass rapidly along wires.
Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and Carlisle in 1800, a process now known as electrolysis. Their work was greatly expanded upon by Michael Faraday in 1833.] Current through a resistance causes localised heating, an effect James Prescott Joule studied mathematically in 1840. One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in a wire disturbing the needle of a magnetic compass. He had discovered electromagnetism, a fundamental interaction between electricity and magnetics.
In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how the current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes the form of a sinusoidal wave. Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as inductance and capacitance. These properties however can become important when circuitry is subjected to transients, such as when first energised.
Electric field
The concept of the electric field was introduced by Michael Faraday. An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses, and like it, extends towards infinity and shows an inverse square relationship with distance. However, there is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker.

Field lines emanating from a positive charge above a plane conductor
An electric field generally varies in space, and its strength at any one point is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point.] The conceptual charge, termed a 'test charge', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of magnetic fields. As the electric field is defined in terms of force, and force is a vector, so it follows that an electric field is also a vector, having both magnitude and direction. Specifically, it is a vector field.
The study of electric fields created by stationary charges is called electrostatics. The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday, whose term 'lines of force' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines. Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves.
A hollow conducting body carries all its charge on its outer surface. The field is therefore zero at all places inside the body. This is the operating principal of the Faraday cage, a conducting metal shell which isolates its interior from outside electrical effects.
The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between the charged parts. Air, for example, tends to arc at electric field strengths which exceed 30 kV per centimetre across small gaps. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre. The most visible natural occurrence of this is lightning, caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of a large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh.
The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor, the sharp spike of which acts to encourage the lightning stroke to develop there, rather than to the building it serves to protect.
Electric potential

A pair of AA cells. The + sign indicates the polarity of the potential differences between the battery terminals.
The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work. The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It is usually measured in volts, and one volt is the potential for which one joule of work must be expended to bring a charge of one coulomb from infinity. This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference, and is the energy required to move a unit charge between two specified points. An electric field has the special property that it is conservative, which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated. The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage.
For practical purposes, it is useful to define a common reference point to which potentials may be expressed and compared. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or ground. Earth is assumed to be an infinite source of equal amounts of positive and negative charge, and is therefore electrically uncharged – and unchargeable.
Electric potential is a scalar quantity, that is, it has only magnitude and not direction. It may be viewed as analogous to height: just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field. As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to the object's surface, otherwise this would produce a force on the charge carriers and the field would fail to be static.
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest gradient of potential, and where the equipotentials lie closest together.[16] Electromagnetism

Magnetic field circles around a current
Ørsted's discovery in 1821 that a magnetic field existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces, the two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it. Ørsted's slightly obscure words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too.
Ørsted did not fully understand his discovery, but he observed the effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by Ampère, who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart. The interaction is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere.

The electric motor exploits an important effect of electromagnetism: a current through a magnetic field experiences a force at right angles to both the field and current
This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821. Faraday's homopolar motor consisted of a permanent magnet sitting in a pool of mercury. A current was allowed through a wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained.
Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as electromagnetic induction, enabled him to state the principle, now known as Faraday's law of induction, that the potential difference induced in a closed circuit is proportional to the rate of change of magnetic flux through the loop. Exploitation of this discovery enabled him to invent the first electrical generator in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy. Faraday's disc was inefficient and of no use as a practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work.
Faraday's and Ampère's work showed that a time-varying magnetic field acted as a source of an electric field, and a time-varying electric field was a source of a magnetic field. Thus, when either field is changing in time, then a field of the other is necessarily induced. Such a phenomenon has the properties of a wave, and is naturally referred to as an electromagnetic wave. Electromagnetic waves were analysed theoretically by James Clerk Maxwell in 1864. Maxwell discovered a set of equations that could unambiguously describe the interrelationship between electric field, magnetic field, electric charge, and electric current. He could moreover prove that such a wave would necessarily travel at the speed of light, and thus light itself was a form of electromagnetic radiation. Maxwell's Laws, which unify light, fields, and charge are one of the great milestones of theoretical physics. Electric circuits

A basic electric circuit. The voltage source V on the left drives a current I around the circuit, delivering electrical energy into the resistance R. From the resistor, the current returns to the source, completing the circuit.
An electric circuit is an interconnection of electric components, usually to perform some useful task, with a return path to enable the charge to return to its source.
The components in an electric circuit can take many forms, which can include elements such as resistors, capacitors, switches, transformers and electronics. Electronic circuits contain active components, usually semiconductors, and typically exhibit non-linear behavior, requiring complex analysis. The simplest electric components are those that are termed passive and linear: while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli.
The resistor is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The ohm, the unit of resistance, was named in honour of Georg Ohm, and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to a current of one amp.
The capacitor is a device capable of storing charge, and thereby storing electrical energy in the resulting field. Conceptually, it consists of two conducting plates separated by a thin insulating layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance. The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit a steady state current, but instead blocks it.
The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality is termed the inductance. The unit of inductance is the henry, named after Joseph Henry, a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second. The inductor's behaviour is in some regards converse to that of the capacitor: it will freely allow an unchanging current, but opposes a rapidly changing one.
Production and uses
Generation

Wind power is of increasing importance in many countries
Thales' experiments with amber rods were the first studies into the production of electrical energy. While this method, now known as the triboelectric effect, is capable of lifting light objects and even generating sparks, it is extremely inefficient. It was not until the invention of the voltaic pile in the eighteenth century that a viable source of electricity became available. The voltaic pile, and its modern descendant, the electrical battery, store energy chemically and make it available on demand in the form of electrical energy. The battery is a versatile and very common power source which is ideally suited to many applications, but its energy storage is finite, and once discharged it must be disposed of or recharged. For large electrical demands electrical energy must be generated and transmitted in bulk.
Electrical energy is usually generated by electro-mechanical generators driven by steam produced from fossil fuel combustion, or the heat released from nuclear reactions; or from other sources such as kinetic energy extracted from wind or flowing water. Such generators bear no resemblance to Faraday's homopolar disc generator of 1831, but they still rely on his electromagnetic principle that a conductor linking a changing magnetic field induces a potential difference across its ends. The invention in the late nineteenth century of the transformer meant that electricity could be generated at centralised power stations, benefiting from economies of scale, and be transmitted across countries with increasing efficiency. Since electrical energy cannot easily be stored in quantities large enough to meet demands on a national scale, at all times exactly as much must be produced as is required. This requires electricity utilities to make careful predictions of their electrical loads, and maintain constant co-ordination with their power stations. A certain amount of generation must always be held in reserve to cushion an electrical grid against inevitable disturbances and losses.
Demand for electricity grows with great rapidity as a nation modernises and its economy develops. The United States showed a 12% increase in demand during each year of the first three decades of the twentieth century,a rate of growth that is now being experienced by emerging economies such as those of India or China. Historically, the growth rate for electricity demand has outstripped that for other forms of energy.
Environmental concerns with electricity generation have led to an increased focus on generation from renewable sources, in particular from wind- and hydropower. While debate can be expected to continue over the environmental impact of different means of electricity production, its final form is relatively clean.
Uses

The light bulb, an early application of electricity, operates by Joule heating: the passage of current through resistance generating heat
Electricity is an extremely flexible form of energy, and has been adapted to a huge, and growing, number of uses. The invention of a practical incandescent light bulb in the 1870s led to lighting becoming one of the first publicly available applications of electrical power. Although electrification brought with it its own dangers, replacing the naked flames of gas lighting greatly reduced fire hazards within homes and factories. Public utilities were set up in many cities targeting the burgeoning market for electrical lighting.
The Joule heating effect employed in the light bulb also sees more direct use in electric heating. While this is versatile and controllable, it can be seen as wasteful, since most electrical generation has already required the production of heat at a power station. A number of countries, such as Denmark, have issued legislation restricting or banning the use of electric heating in new buildings. Electricity is however a highly practical energy source for refrigeration, with air conditioning representing a growing sector for electricity demand, the effects of which electricity utilities are increasingly obliged to accommodate.
Electricity is used within telecommunications, and indeed the electrical telegraph, demonstrated commercially in 1837 by Cooke and Wheatstone, was one of its earliest applications. With the construction of first intercontinental, and then transatlantic, telegraph systems in the 1860s, electricity had enabled communications in minutes across the globe. Optical fibre and satellite communication technology have taken a share of the market for communications systems, but electricity can be expected to remain an essential part of the process.
The effects of electromagnetism are most visibly employed in the electric motor, which provides a clean and efficient means of motive power. A stationary motor such as a winch is easily provided with a supply of power, but a motor that moves with its application, such as an electric vehicle, is obliged to either carry along a power source such as a battery, or by collecting current from a sliding contact such as a pantograph, placing restrictions on its range or performance.
Electronic devices make use of the transistor, perhaps one of the most important inventions of the twentieth century, and a fundamental building block of all modern circuitry. A modern integrated circuit may contain several billion miniaturised transistors in a region only a few centimetres square.
Electricity and the natural world
Physiological effects
A voltage applied to a human body causes an electric current through the tissues, and although the relationship is non-linear, the greater the voltage, the greater the current. The threshold for perception varies with the supply frequency and with the path of the current, but is about 1 mA for mains-frequency electricity. If the current is sufficiently high, it will cause muscle contraction, fibrillation of the heart, and tissue burns. The lack of any visible sign that a conductor is electrified makes electricity a particular hazard. The pain caused by an electric shock can be intense, leading electricity at times to be employed as a method of torture. Death caused by an electric shock is referred to as electrocution. Electrocution is still the means of judicial execution in some jurisdictions, though its use has become rarer in recent times.
Electrical phenomena in nature

The electric eel, Electrophorus electricus
Electricity is not a human invention, and may be observed in several forms in nature, a prominent manifestation of which is lightning. Many interactions familiar at the macroscopic level, such as touch, friction or chemical bonding, are due to interactions between electrostatic fields. The Earth's magnetic field is thought to arise from a natural dynamo of circulating currents in the planet's core. Certain crystals, such as quartz, or even sugar, generate a potential difference across their faces when subjected to external pressure. This phenomenon is known as piezoelectricity, from the Greek piezein (πιέζειν), meaning to press, and was discovered in 1880 by Pierre and Jacques Curie. The effect is reciprocal, and when a piezoelectric material is subjected to an electric field, a small change in physical dimensions take place.
Some organisms, such as sharks, are able to detect and respond to changes in electric fields, an ability known as electroreception, while others, termed electrogenic, are able to generate voltages themselves to serve as a predatory or defensive weapon. The order Gymnotiformes, of which the best known example is the electric eel, detect or stun their prey via high voltages generated from modified muscle cells called electrocytes. All animals transmit information along their cell membranes with voltage pulses called action potentials, whose functions include communication by the nervous system between neurons and muscles. An electric shock stimulates this system, and causes muscles to contract. Action potentials are also responsible for coordinating activities in certain plants and mammals.
Electricity in popular culture
In the 19th and early 20th century, electricity was not part of the everyday life of many people, even in the industrialised Western world. The popular culture of the time accordingly often depicts it as a mysterious, quasi-magical force that can slay the living, revive the dead or otherwise bend the laws of nature. This attitude is manifest in Mary Shelley's Frankenstein (1819), which originated the cliché of a mad scientist reviving a patchwork creature with electrical power.
As the public familiarity with electricity as the lifeblood of the Second Industrial Revolution grew, its wielders were more often cast in a positive light, such as the workers who "finger death at their gloves' end as they piece and repiece the living wires" in Rudyard Kipling's 1907 poem The Sons of Martha. Electrically powered vehicles of every sort featured large in adventure stories such as those of Jules Verne or the Tom Swift books. The masters of electricity, whether fictional or real—including scientists such as Thomas Edison, Charles Steinmetz or Nikola Tesla—were popularly conceived of as having wizard-like powers.
With electricity ceasing to be a novelty and becoming a necessity of everyday life in the later half of the 20th century, it required particular attention by popular culture only when it stops flowing, an event that usually signals disaster. The people who keep it flowing, such as the nameless hero of Jimmy Webb’s song "Wichita Lineman" (1968), are still often cast as heroic, wizard-like figures.
Electrical engineering

Electrical Engineers design complex power systems...

... and complex electronic circuits.
Electrical engineering, sometimes referred to as electrical and electronic engineering, is a field of engineering that deals with the study and application of electricity, electronics and electromagnetism. The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical power supply. It now covers a range of subtopics including power, electronics, control systems, signal processing and telecommunications.
Electrical engineering may or may not include electronic engineering. Where a distinction is made, usually outside of the United States, electrical engineering is considered to deal with the problems associated with large-scale electrical systems such as power transmission and motor control, whereas electronic engineering deals with the study of small-scale electronic systems including computers and integrated circuits. Alternatively, electrical engineers are usually concerned with using electricity to transmit energy, while electronic engineers are concerned with using electricity to transmit information.
History
Electricity has been a subject of scientific interest since at least the early 17th century. The first electrical engineer was probably William Gilbert who designed the versorium: a device that detected the presence of statically charged objects. He was also the first to draw a clear distinction between magnetism and static electricity and is credited with establishing the term electricity. In 1775 Alessandro Volta's scientific experimentations devised the electrophorus, a device that produced a static electric charge, and by 1800 Volta developed the voltaic pile, a forerunner of the electric battery.

Thomas Edison built the world's first large-scale electrical supply network
However, it was not until the 19th century that research into the subject started to intensify. Notable developments in this century include the work of Georg Ohm, who in 1827 quantified the relationship between the electric current and potential difference in a conductor, Michael Faraday, the discoverer of electromagnetic induction in 1831, and James Clerk Maxwell, who in 1873 published a unified theory of electricity and magnetism in his treatise Electricity and Magnetism.

Nikola Tesla made long-distance electrical transmission networks possible.
During these years, the study of electricity was largely considered to be a subfield of physics. It was not until the late 19th century that universities started to offer degrees in electrical engineering. The Darmstadt University of Technology founded the first chair and the first faculty of electrical engineering worldwide in 1882. In 1883 Darmstadt University of Technology and Cornell University introduced the world's first courses of study in electrical engineering, and in 1885 the University College London founded the first chair of electrical engineering in the United Kingdom. The University of Missouri subsequently established the first department of electrical engineering in the United States in 1886.
During this period, the work concerning electrical engineering increased dramatically. In 1882, Edison switched on the world's first large-scale electrical supply network that provided 110 volts direct current to fifty-nine customers in lower Manhattan. In 1887, Nikola Tesla filed a number of patents related to a competing form of power distribution known as alternating current. In the following years a bitter rivalry between Tesla and Edison, known as the "War of Currents", took place over the preferred method of distribution. AC eventually replaced DC for generation and power distribution, enormously extending the range and improving the safety and efficiency of power distribution.
The efforts of the two did much to further electrical engineering—Tesla's work on induction motors and polyphase systems influenced the field for years to come, while Edison's work on telegraphy and his development of the stock ticker proved lucrative for his company, which ultimately became General Electric. However, by the end of the 19th century, other key figures in the progress of electrical engineering were beginning to emerge.
Modern developments
During the development of radio, many scientists and inventors contributed to radio technology and electronics. In his classic UHF experiments of 1888, Heinrich Hertz transmitted (via a spark-gap transmitter) and detected radio waves using electrical equipment. In 1895, Nikola Tesla was able to detect signals from the transmissions of his New York lab at West Point (a distance of 80.4 km / 49.95 miles). In 1897, Karl Ferdinand Braun introduced the cathode ray tube as part of an oscilloscope, a crucial enabling technology for electronic television. John Fleming invented the first radio tube, the diode, in 1904. Two years later, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode. In 1895, Guglielmo Marconi furthered the art of hertzian wireless methods. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by the curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, Cornwall, and St. John's, Newfoundland, a distance of 2,100 miles (3,400 km). In 1920 Albert Hull developed the magnetron which would eventually lead to the development of the microwave oven in 1946 by Percy Spencer. In 1934 the British military began to make strides towards radar (which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at Bawdsey in August 1936.
In 1941 Konrad Zuse presented the Z3, the world's first fully functional and programmable computer. In 1946 the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives, including the Apollo missions and the NASA moon landing.
The invention of the transistor in 1947 by William B. Shockley, John Bardeen and Walter Brattain opened the door for more compact devices and led to the development of the integrated circuit in 1958 by Jack Kilby and independently in 1959 by Robert Noyce. In 1968 Marcian Hoff invented the first microprocessor at Intel and thus ignited the development of the personal computer. The first realization of the microprocessor was the Intel 4004, a 4-bit processor developed in 1971, but only in 1973 did the Intel 8080, an 8-bit processor, make the building of the first personal computer, the Altair 8800, possible. Education
Electrical engineers typically possess an academic degree with a major in electrical engineering. The length of study for such a degree is usually four or five years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Technology or Bachelor of Applied Science depending upon the university. The degree generally includes units covering physics, mathematics, computer science, project management and specific topics in electrical engineering. Initially such topics cover most, if not all, of the sub-disciplines of electrical engineering. Students then choose to specialize in one or more sub-disciplines towards the end of the degree.
Some electrical engineers also choose to pursue a postgraduate degree such as a Master of Engineering/Master of Science (MEng/MSc), a Master of Engineering Management, a Doctor of Philosophy (PhD) in Engineering, an Engineering Doctorate (EngD), or an Engineer's degree. The Master and Engineer's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy and Engineering Doctorate degrees consist of a significant research component and are often viewed as the entry point to academia. In the United Kingdom and various other European countries, the Master of Engineering is often considered an undergraduate degree of slightly longer duration than the Bachelor of Engineering.
Practicing engineers
In most countries, a Bachelor's degree in engineering represents the first step towards professional certification and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements (including work experience requirements) before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada and South Africa ), Chartered Engineer (in India, the United Kingdom, Ireland and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (in much of the European Union).
The advantages of certification vary depending upon location. For example, in the United States and Canada "only a licensed engineer may seal engineering work for public and private clients" This requirement is enforced by state and provincial legislation such as Quebec's Engineers Act In other countries, such as Australia, no such legislation exists to practise engineering, however it is a mandate that if an engineer is to sign off or seal an engineering document or drawing then that person must be registered as a Certified Practising Engineer (or CPEng). Practically all certifying bodies maintain a code of ethics that they expect all members to abide by or risk expulsion. In this way these organizations play an important role in maintaining ethical standards for the profession. Even in jurisdictions where certification has little or no legal bearing on work, engineers are subject to contract law. In cases where an engineer's work fails he or she may be subject to the tort of negligence and, in extreme cases, the charge of criminal negligence. An engineer's work must also comply with numerous other rules and regulations such as building codes and legislation pertaining to environmental law.
Professional bodies of note for electrical engineers include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (IET). The IEEE claims to produce 30% of the world's literature in electrical engineering, has over 360,000 members worldwide and holds over 3,000 conferences annually. The IET publishes 21 journals, has a worldwide membership of over 150,000, and claims to be the largest professional engineering society in Europe. Obsolescence of technical skills is a serious concern for electrical engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency.
In countries such as Australia, Canada and the United States electrical engineers make up around 0.25% of the labor force (see note). Outside of these countries, it is difficult to gauge the demographics of the profession due to less meticulous reporting on labor statistics. However, in terms of electrical engineering graduates per-capita, electrical engineering graduates would probably be most numerous in countries such as Taiwan, Japan, India and South Korea.
Tools and work
From the Global Positioning System to electric power generation, electrical engineers have contributed to the development of a wide range of technologies. They design, develop, test and supervise the deployment of electrical systems and electronic devices. For example, they may work on the design of telecommunication systems, the operation of electric power stations, the lighting and wiring of buildings, the design of household appliances or the electrical control of industrial machinery.

Satellite communications is one of many projects an electrical engineer might work on
Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electrical systems. Nevertheless, the ability to sketch ideas is still invaluable for quickly communicating with others.
Although most electrical engineers will understand basic circuit theory (that is the interactions of elements such as resistors, capacitors, diodes, transistors and inductors in a circuit), the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI (the design of integrated circuits), but are largely irrelevant to engineers working with macroscopic electrical systems. Even circuit theory may not be relevant to a person designing telecommunication systems that use off-the-shelf components. Perhaps the most important technical skills for electrical engineers are reflected in university programs, which emphasize strong numerical skills, computer literacy and the ability to understand the technical language and concepts that relate to electrical engineering.
For many engineers, technical work accounts for only a fraction of the work they do. A lot of time may also be spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.
The workplaces of electrical engineers are just as varied as the types of work they do. Electrical engineers may be found in the pristine lab environment of a fabrication plant, the offices of a consulting firm or on site at a mine. During their working life, electrical engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers.
Sub-disciplines
Electrical engineering has many sub-disciplines, the most popular of which are listed below. Although there are electrical engineers who focus exclusively on one of these sub-disciplines, many deal with a combination of them. Sometimes certain fields, such as electronic engineering and computer engineering, are considered separate disciplines in their own right.
Power

Power engineering deals with the generation, transmission and distribution of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors, high voltage engineering and power electronics. In many regions of the world, governments maintain an electrical network called a power grid that connects a variety of generators together with users of their energy. Users purchase electrical energy from the grid, avoiding the costly exercise of having to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called on-grid power systems and may supply the grid with additional power, draw power from the grid or do both. Power engineers may also work on systems that do not connect to the grid, called off-grid power systems, which in some cases are preferable to on-grid systems. The future includes Satellite controlled power systems, with feedback in real time to prevent power surges and prevent blackouts.
Control

Control systems play a critical role in space flightControl engineering focuses on the modeling of a diverse range of dynamic systems and the design of controllers that will cause these systems to behave in the desired manner. To implement such controllers electrical engineers may use electrical circuits, digital signal processors, microcontrollers and PLCs (Programmable Logic Controllers). Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the cruise control present in many modern automobiles. It also plays an important role in industrial automation.
Control engineers often utilize feedback when designing control systems. For example, in an automobile with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the motor's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback.
Electric motor

Electric motors
An electric motor uses electrical energy to produce mechanical energy. The reverse process, that of using mechanical energy to produce electrical energy, is accomplished by a generator or dynamo. Traction motors used on locomotives and some electric and hybrid automobiles often perform both tasks if the vehicle is equipped with dynamic brakes. Electric motors are found in household appliances such as fans, refrigerators, washing machines, pool pumps, floor vacuums, and fan-forced ovens. They are also found in many other devices such as computer equipment, in its disk drives, printers, and fans; and in some sound and video playing and recording equipment as DVD/CD players and recorders, tape players and recorders, and record players. Electric motors are also found in several kinds of toys such as some kinds of vehicles and robotic toys.
History and development

Jedlik's electric motor . The World's first electric motor (Hungary, 1828)

Jedlik's electric car of 1828.
The principle of conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821 and consisted of a free-hanging wire dipping into a pool of mercury. A permanent magnet was placed in the middle of the pool of mercury. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire. This motor is often demonstrated in school physics classes, but brine (salt water) is sometimes used in place of the toxic mercury. This is the simplest form of a class of electric motors called homopolar motors. A later refinement is the Barlow's Wheel. These were demonstration devices, unsuited to practical applications due to limited power.
The first real electric motor, using electromagnets for both stationary and rotating parts, was demonstrated by Ányos Jedlik in 1828 Hungary. He built an electric-motor propelled vehicle in 1828.
The first English commutator-type direct-current electric motor capable of a practical application was invented by the British scientist William Sturgeon in 1832. Following Sturgeon's work, a commutator-type direct-current electric motor made with the intention of commercial use was built by the American Thomas Davenport and patented in 1837. Although several of these motors were built and used to operate equipment such as a printing press, due to the high cost of primary battery power, the motors were commercially unsuccessful and Davenport went bankrupt. Several inventors followed Sturgeon in the development of DC motors but all encountered the same cost issues with primary battery power. No electricity distribution had been developed at the time. Like Sturgeon's motor, there was no practical commercial market for these motors.
The modern DC motor was invented by accident in 1873, when Zénobe Gramme connected the dynamo he had invented to a second similar unit, driving it as a motor. The Gramme machine was the first electric motor that was successful in the industry.
In 1888 Nikola Tesla invented the first practicable AC motor and with it the polyphase power transmission system. Tesla continued his work on the AC motor in the years to follow at the Westinghouse company.
Categorization of electric motors
The classic division of electric motors has been that of Alternating Current (AC) types vs Direct Current (DC) types. This is more a de facto convention, rather than a rigid distinction. For example, many classic DC motors run on AC power, these motors being referred to as universal motors.
The ongoing trend toward electronic control further muddles the distinction, as modern drivers have moved the commutator out of the motor shell. For this new breed of motor, driver circuits are relied upon to generate sinusoidal AC drive currents, or some approximation of. The two best examples are: the brushless DC motor and the stepping motor, both being poly-phase AC motors requiring external electronic control.
Considering all rotating (or linear) electric motors require synchronism between a moving magnetic field and a moving current sheet for average torque production, there is a clearer distinction between an asynchronous motor and synchronous types. An asynchronous motor requires slip between the moving magnetic field and a winding set to induce current in the winding set by mutual inductance; the most ubiquitous example being the common AC induction motor which must slip in order to generate torque. In the synchronous types, induction (or slip) is not a requisite for magnetic field or current production (eg. permanent magnet motors, synchronous brush-less wound-rotor doubly-fed electric machine).
Comparison of motor types
Type Advantages Disadvantages Typical Application Typical Drive
AC Induction(Shaded Pole)Least expensiveLong lifehigh power Rotation slips from frequencyLow starting torque Fans Uni/Poly-phase AC
AC Induction(split-phase capacitor)High powerhigh starting torque Rotation slips from frequency Appliances Uni/Poly-phase AC
AC SynchronousRotation in-sync with freqlong-life (alternator) More expensive ClocksAudio turntablestape drives Uni/Poly-phase AC
Stepper DCPrecision positioningHigh holding torque Requires a controller Positioning in printers and floppy drives Multiphase DC
Brushless DC electric motorLong lifespanlow maintenanceHigh efficiency High initial costRequires a controller Hard drivesCD/DVD playerselectric vehicles Multiphase DC
Brushed DC electric motorLow initial costSimple speed control (Dynamo) High maintenance (brushes)Low lifespan Treadmill exercisersautomotive starters Direct (PWM)
Torque capability of motor types
When optimally designed for a given active current (i.e., torque current), voltage, pole-pair number, excitation frequency (i.e., synchronous speed), and core flux density, all categories of electric motors or generators will exhibit virtually the same maximum continuous shaft torque (i.e., operating torque) within a given physical size of electromagnetic core. Some applications require bursts of torque beyond the maximum operating torque, such as short bursts of torque to accelerate an electric vehicle from standstill. Always limited by magnetic core saturation or safe operating temperature rise and voltage, the capacity for torque bursts beyond the maximum operating torque differs significantly between categories of electric motors or generators.
Note: Capacity for bursts of torque should not be confused with Field Weakening capability inherent in fully electromagnetic electric machines (Permanent Magnet (PM) electric machine are excluded). Field Weakening, which is not readily available with PM electric machines, allows an electric machine to operate beyond the designed frequency of excitation without electrical damage.
Electric machines without a transformer circuit topology, such as Field-Wound (i.e., electromagnet) or Permanent Magnet (PM) Synchronous electric machines cannot realize bursts of torque higher than the maximum designed torque without saturating the magnetic core and rendering any increase in current (i.e., torque) as useless. Furthermore, the permanent magnet assembly of PM synchronous electric machines can be irreparably damaged, if bursts of torque exceeding the maximum operating torque rating are attempted.
Electric machines with a transformer circuit topology, such Induction (i.e., asynchronous) electric machines, Induction Doubly-Fed electric machines, and Induction or Synchronous Wound-Rotor Doubly-Fed (WRDF) electric machines, exhibit very high bursts of torque because the active current (i.e., Magneto-Motive-Force or the product of current and winding-turns) induced on either side of the transformer oppose each other and as a result, the active current contributes nothing to the transformer coupled magnetic core flux density, which would otherwise lead to core saturation.
Electric machines that rely on Induction or Asynchronous principles short-circuit one port of the transformer circuit and as a result, the reactive impedance of the transformer circuit becomes dominant as slip increases, which limits the magnitude of active (i.e., real) current. Still, bursts of torque that are two to three times higher than the maximum design torque are realizable.
The Synchronous WRDF electric machine is the only electric machine with a truly dual ported transformer circuit topology (i.e., both ports independently excited with no short-circuited port). The dual ported transformer circuit topology is known to be unstable and requires a multiphase slip-ring-brush assembly to propagate limited power to the rotor winding set. If a precision means were available to instantaneously control torque angle and slip for synchronous operation during motoring or generating while simultaneously providing brushless power to the rotor winding set (see Brushless wound-rotor doubly-fed electric machine), the active current of the Synchronous WRDF electric machine would be independent of the reactive impedance of the transformer circuit and bursts of torque significantly higher than the maximum operating torque and far beyond the practical capability of any other type of electric machine would be realizable. Torque bursts greater than eight times operating torque have been calculated.
DC Motors
A DC motor is designed to run on DC electric power. Two examples of pure DC designs are Michael Faraday's homopolar motor (which is uncommon), and the ball bearing motor, which is (so far) a novelty. By far the most common DC motor types are the brushed and brushless types, which use internal and external commutation respectively to create an oscillating AC current from the DC source -- so they are not purely DC machines in a strict sense.
Brushed DC motors
The classic DC motor design generates an oscillating current in a wound rotor with a split ring commutator, and either a wound or permanent magnet stator. A rotor consists of a coil wound around a rotor which is then powered by any type of battery.
Many of the limitations of the classic commutator DC motor are due to the need for brushes to press against the commutator. This creates friction. At higher speeds, brushes have increasing difficulty in maintaining contact. Brushes may bounce off the irregularities in the commutator surface, creating sparks. This limits the maximum speed of the machine. The current density per unit area of the brushes limits the output of the motor. The imperfect electric contact also causes electrical noise. Brushes eventually wear out and require replacement, and the commutator itself is subject to wear and maintenance. The commutator assembly on a large machine is a costly element, requiring precision assembly of many parts. There are three types of DC motor:
DC series motor
DC shunt motor
DC compound motor - there are also two types:
cumulative compound
differentially compounded
Brushless DC motors
Some of the problems of the brushed DC motor are eliminated in the brushless design. In this motor, the mechanical "rotating switch" or commutator/brushgear assembly is replaced by an external electronic switch synchronised to the rotor's position. Brushless motors are typically 85-90% efficient, whereas DC motors with brushgear are typically 75-80% efficient.
Midway between ordinary DC motors and stepper motors lies the realm of the brushless DC motor. Built in a fashion very similar to stepper motors, these often use a permanent magnet external rotor, three phases of driving coils, one or more Hall effect sensors to sense the position of the rotor, and the associated drive electronics. The coils are activated, one phase after the other, by the drive electronics as cued by the signals from the Hall effect sensors. In effect, they act as three-phase synchronous motors containing their own variable-frequency drive electronics. A specialized class of brushless DC motor controllers utilize EMF feedback through the main phase connections instead of Hall effect sensors to determine position and velocity. These motors are used extensively in electric radio-controlled vehicles. When configured with the magnets on the outside, these are referred to by modelists as outrunner motors.
Brushless DC motors are commonly used where precise speed control is necessary, as in computer disk drives or in video cassette recorders, the spindles within CD, CD-ROM (etc.) drives, and mechanisms within office products such as fans, laser printers and photocopiers. They have several advantages over conventional motors:
Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.
Without a commutator to wear out, the life of a DC brushless motor can be significantly longer compared to a DC motor using brushes and a commutator. Commutation also tends to cause a great deal of electrical and RF noise; without a commutator or brushes, a brushless motor may be used in electrically sensitive devices like audio equipment or computers.
The same Hall effect sensors that provide the commutation can also provide a convenient tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer signal can be used to derive a "fan OK" signal.
The motor can be easily synchronized to an internal or external clock, leading to precise speed control.
Brushless motors have no chance of sparking, unlike brushed motors, making them better suited to environments with volatile chemicals and fuels. Also, sparking generates ozone which can accumulate in poorly ventilated buildings risking harm to occupants' health.
Brushless motors are usually used in small equipment such as computers and are generally used to get rid of unwanted heat.
They are also very quiet motors which is an advantage if being used in equipment that is affected by vibrations.
Modern DC brushless motors range in power from a fraction of a watt to many kilowatts. Larger brushless motors up to about 100 kW rating are used in electric vehicles. They also find significant use in high-performance electric model aircraft.
Coreless or Ironless DC motors
Nothing in the design of any of the motors described above requires that the iron (steel) portions of the rotor actually rotate; torque is exerted only on the windings of the electromagnets. Taking advantage of this fact is the coreless or ironless DC motor, a specialized form of a brush or brushless DC motor. Optimized for rapid acceleration, these motors have a rotor that is constructed without any iron core. The rotor can take the form of a winding-filled cylinder inside the stator magnets, a basket surrounding the stator magnets, or a flat pancake (possibly formed on a printed wiring board) running between upper and lower stator magnets. The windings are typically stabilized by being impregnated with Electrical epoxy potting systems. Filled epoxies that have moderate mixed viscosity and a long gel time. These systems are highlighted by low shrinkage and low exotherm. Typically UL 1446 recognized as a potting compound for use up to 180C (Class H) UL File No. E 210549.
Because the rotor is much lighter in weight (mass) than a conventional rotor formed from copper windings on steel laminations, the rotor can accelerate much more rapidly, often achieving a mechanical time constant under 1 ms. This is especially true if the windings use aluminum rather than the heavier copper. But because there is no metal mass in the rotor to act as a heat sink, even small coreless motors must often be cooled by forced air.
These motors were commonly used to drive the capstan(s) of magnetic tape drives and are still widely used in high-performance servo-controlled systems, like radio-controlled vehicles/aircraft, humanoid robotic systems, industrial automation, medical devices, etc.
Universal motors
A variant of the wound field DC motor is the universal motor. The name derives from the fact that it may use AC or DC supply current, although in practice they are nearly always used with AC supplies. The principle is that in a wound field DC motor the current in both the field and the armature (and hence the resultant magnetic fields) will alternate (reverse polarity) at the same time, and hence the mechanical force generated is always in the same direction. In practice, the motor must be specially designed to cope with the AC (impedance must be taken into account, as must the pulsating force), and the resultant motor is generally less efficient than an equivalent pure DC motor.
Operating at normal power line frequencies, the maximum output of universal motors is limited and motors exceeding one kilowatt (about 1.3 horsepower) are rare. But universal motors also form the basis of the traditional railway traction motor in electric railways. In this application, to keep their electrical efficiency high, they were operated from very low frequency AC supplies, with 25 and 16.7 hertz (Hz) operation being common. Because they are universal motors, locomotives using this design were also commonly capable of operating from a third rail powered by DC.
The advantage of the universal motor is that AC supplies may be used on motors which have the typical characteristics of DC motors, specifically high starting torque and very compact design if high running speeds are used. The negative aspect is the maintenance and short life problems caused by the commutator. As a result such motors are usually used in AC devices such as food mixers and power tools which are used only intermittently. Continuous speed control of a universal motor running on AC is easily obtained by use of a thyristor circuit, while stepped speed control can be accomplished using multiple taps on the field coil. Household blenders that advertise many speeds frequently combine a field coil with several taps and a diode that can be inserted in series with the motor (causing the motor to run on half-wave rectified AC).
Universal motors generally run at high speeds, making them useful for appliances such as blenders, vacuum cleaners, and hair dryers where high RPM operation is desirable. They are also commonly used in portable power tools, such as drills, circular and jig saws, where the motor's characteristics work well. Many vacuum cleaner and weed trimmer motors exceed 10,000 RPM, while Dremel and other similar miniature grinders will often exceed 30,000 RPM.
Motor damage may occur due to overspeeding (running at an RPM in excess of design limits) if the unit is operated with no significant load. On larger motors, sudden loss of load is to be avoided, and the possibility of such an occurrence is incorporated into the motor's protection and control schemes. In smaller applications, a fan blade attached to the shaft often acts as an artificial load to limit the motor speed to a safe value, as well as a means to circulate cooling airflow over the armature and field windings.
With the very low cost of semiconductor rectifiers, some applications that would have previously used a universal motor now use a pure DC motor, sometimes with a permanent magnet field.
AC motors
In 1882, Nikola Tesla invented the rotating magnetic field, and pioneered the use of a rotary field of force to operate machines. He exploited the principle to design a unique two-phase induction motor in 1883. In 1885, Galileo Ferraris independently researched the concept. In 1888, Ferraris published his research in a paper to the Royal Academy of Sciences in Turin.
Introduction of Tesla's motor from 1888 onwards initiated what is sometimes referred to as the Second Industrial Revolution, making possible the efficient generation and long distance distribution of electrical energy using the alternating current transmission system, also of Tesla's invention (1888). Before the invention of the rotating magnetic field, motors operated by continually passing a conductor through a stationary magnetic field (as in homopolar motors).
Tesla had suggested that the commutators from a machine could be removed and the device could operate on a rotary field of force. Professor Poeschel, his teacher, stated that would be akin to building a perpetual motion machine. Tesla would later attain U.S. Patent 0,416,194 , Electric Motor (December 1889), which resembles the motor seen in many of Tesla's photos. This classic alternating current electro-magnetic motor was an induction motor.
Michail Osipovich Dolivo-Dobrovolsky later invented a three-phase "cage-rotor" in 1890. This type of motor is now used for the vast majority of commercial applications.
Components
A typical AC motor consists of two parts:
An outside stationary stator having coils supplied with AC current to produce a rotating magnetic field, and;
An inside rotor attached to the output shaft that is given a torque by the rotating field.
Torque motors
A torque motor (also known as a limited torque motor) is a specialized form of induction motor which is capable of operating indefinitely while stalled, that is, with the rotor blocked from turning, without incurring damage. In this mode of operation, the motor will apply a steady torque to the load (hence the name).
A common application of a torque motor would be the supply- and take-up reel motors in a tape drive. In this application, driven from a low voltage, the characteristics of these motors allow a relatively-constant light tension to be applied to the tape whether or not the capstan is feeding tape past the tape heads. Driven from a higher voltage, (and so delivering a higher torque), the torque motors can also achieve fast-forward and rewind operation without requiring any additional mechanics such as gears or clutches. In the computer world, torque motors are used with force feedback steering wheels.
Another common application is the control of the throttle of an internal combustion engine in conjunction with an electronic governor. In this usage, the motor works against a return spring to move the throttle in accordance with the output of the governor. The latter monitors engine speed by counting electrical pulses from the ignition system or from a magnetic pickup and, depending on the speed, makes small adjustments to the amount of current applied to the motor. If the engine starts to slow down relative to the desired speed, the current will be increased, the motor will develop more torque, pulling against the return spring and opening the throttle. Should the engine run too fast, the governor will reduce the current being applied to the motor, causing the return spring to pull back and close the throttle.
Slip ring
The slip ring or wound rotor motor is an induction machine where the rotor comprises a set of coils that are terminated in slip rings to which external impedances can be connected. The stator is the same as is used with a standard squirrel cage motor.
By changing the impedance connected to the rotor circuit, the speed/current and speed/torque curves can be altered.
The slip ring motor is used primarily to start a high inertia load or a load that requires a very high starting torque across the full speed range. By correctly selecting the resistors used in the secondary resistance or slip ring starter, the motor is able to produce maximum torque at a relatively low current from zero speed to full speed. A secondary use of the slip ring motor is to provide a means of speed control. Because the torque curve of the motor is effectively modified by the resistance connected to the rotor circuit, the speed of the motor can be altered. Increasing the value of resistance on the rotor circuit will move the speed of maximum torque down. If the resistance connected to the rotor is increased beyond the point where the maximum torque occurs at zero speed, the torque will be further reduced.
When used with a load that has a torque curve that increases with speed, the motor will operate at the speed where the torque developed by the motor is equal to the load torque. Reducing the load will cause the motor to speed up, and increasing the load will cause the motor to slow down until the load and motor torque are equal. Operated in this manner, the slip losses are dissipated in the secondary resistors and can be very significant. The speed regulation is also very poor.
Stepper motors
Closely related in design to three-phase AC synchronous motors are stepper motors, where an internal rotor containing permanent magnets or a large iron core with salient poles is controlled by a set of external magnets that are switched electronically. A stepper motor may also be thought of as a cross between a DC electric motor and a solenoid. As each coil is energized in turn, the rotor aligns itself with the magnetic field produced by the energized field winding. Unlike a synchronous motor, in its application, the motor may not rotate continuously; instead, it "steps" from one position to the next as field windings are energized and de-energized in sequence. Depending on the sequence, the rotor may turn forwards or backwards.
Simple stepper motor drivers entirely energize or entirely de-energize the field windings, leading the rotor to "cog" to a limited number of positions; more sophisticated drivers can proportionally control the power to the field windings, allowing the rotors to position between the cog points and thereby rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.
Stepper motors can be rotated to a specific angle with ease, and hence stepper motors are used in pre-gigabyte era computer disk drives, where the precision they offered was adequate for the correct positioning of the read/write head of a hard disk drive. As drive density increased, the precision limitations of stepper motors made them obsolete for hard drives, thus newer hard disk drives use read/write head control systems based on voice coils.
Stepper motors were upscaled to be used in electric vehicles under the term SRM (switched reluctance machine).
Linear motors
A linear motor is essentially an electric motor that has been "unrolled" so that, instead of producing a torque (rotation), it produces a linear force along its length by setting up a traveling electromagnetic field.
Linear motors are most commonly induction motors or stepper motors. You can find a linear motor in a maglev (Transrapid) train, where the train "flies" over the ground, and in many roller-coasters where the rapid motion of the motorless railcar is controlled by the rail.
Doubly-fed electric motor
Doubly-fed electric motors have two independent multiphase windings that actively participate in the energy conversion process with at least one of the winding sets electronically controlled for variable speed operation. Two is the most active multiphase winding sets possible without duplicating singly-fed or doubly-fed categories in the same package. As a result, doubly-fed electric motors are machines with an effective constant torque speed range that is twice synchronous speed for a given frequency of excitation. This is twice the constant torque speed range as singly-fed electric machines, which have only one active winding set.
A doubly-fed motor allows for a smaller electronic converter but the cost of the rotor winding and slip rings may offset the saving in the power electronics components. Difficulties with controlling speed near synchronous speed limit applications.
Singly-fed electric motor
Singly-fed electric machines incorporate a single multiphase winding set that is connected to a power supply. Singly-fed electric machines may be either induction or synchronous. The active winding set can be electronically controlled. Induction machines develop starting torque at zero speed and can operate as standalone machines. Synchronous machines must have auxiliary means for startup, such as a starting induction squirrel-cage winding or an electronic controller. Singly-fed electric machines have an effective constant torque speed range up to synchronous speed for a given excitation frequency.
The induction (asynchronous) motors (i.e., squirrel cage rotor or wound rotor), synchronous motors (i.e., field-excited, permanent magnet or brushless DC motors, reluctance motors, etc.), which are discussed on the this page, are examples of singly-fed motors. By far, singly-fed motors are the predominantly installed type of motors.
Nanotube nanomotor
Researchers at University of California, Berkeley, recently developed rotational bearings based upon multiwall carbon nanotubes. By attaching a gold plate (with dimensions of the order of 100nm) to the outer shell of a suspended multiwall carbon nanotube (like nested carbon cylinders), they are able to electrostatically rotate the outer shell relative to the inner core. These bearings are very robust; devices have been oscillated thousands of times with no indication of wear. These nanoelectromechanical systems (NEMS) are the next step in miniaturization that may find their way into commercial aspects in the future.
Materials
There is an impending shortage of many rare raw materials used in the manufacture of hybrid and electric cars (Nishiyama 2007) (Cox 2008). For example, the rare earth element dysprosium is required to fabricate many of the advanced electric motors used in hybrid cars (Cox 2008). However, over 95% of the world's rare earth elements are mined in China (Haxel et al. 2005), and domestic Chinese consumption is expected to consume China's entire supply by 2012 (Cox 2008).
While permanent magnet motors, favored in hybrids such as those made by Toyota, often use rare earth materials in their magnets, AC traction motors used in production electric vehicles such as the GM EV1, Toyota RAV4 EV and Tesla Roadster do not use permanent magnets or the associated rare earth materials. AC motors typically use conventional copper wire for their stator coils and copper or aluminum rods or bars for their rotor. AC motors do not significantly use rare earth materials.
Electronics

circuit boardElectronic engineering involves the design and testing of electronic circuits that use the properties of components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuned circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit. Another example (of a pneumatic signal conditioner) is shown in the adjacent photograph.
Prior to the second world war, the subject was commonly known as radio engineering and basically was restricted to aspects of communications and radar, commercial radio and early television. Later, in post war years, as consumer devices began to be developed, the field grew to include modern television, audio systems, computers and microprocessors. In the mid to late 1950s, the term radio engineering gradually gave way to the name electronic engineering.
Before the invention of the integrated circuit in 1959, electronic circuits were constructed from discrete components that could be manipulated by humans. These discrete circuits consumed much space and power and were limited in speed, although they are still common in some applications. By contrast, integrated circuits packed a large number—often millions—of tiny electrical components, mainly transistors, into a small chip around the size of a coin. This allowed for the powerful computers and other electronic devices we see today.
Electronic engineering
Electronic engineering is a discipline dealing with the behavior and effects of electrons (as in electron tubes and transistors) and with electronic devices, systems, or equipment. The term now also covers a large part of electrical engineering degree courses as studied at most European universities. In the U.S., however, electrical engineering implies all the wide electrical disciplines including electronics.
In many areas, electronic engineering is considered to be at the same level as electrical engineering, requiring that more general programmes be called electrical and electronic engineering (many UK and Turkish universities have departments of Electronic and Electrical Engineering). Both define a broad field that encompasses many subfields including those that deal with power, instrumentation engineering, telecommunications, and semiconductor circuit design amongst many others.
Terminology
The name electrical engineering is still used to cover electronic engineering amongst some of the older (notably American) universities and graduates there are called electrical engineers. The distinction between electronic and electrical engineers is becoming more and more distinct. While electrical engineers utilize voltage and current to deliver power, electronic engineers utilize voltage and current to deliver information.
Some people believe the term electrical engineer should be reserved for those having specialised in power and heavy current or high voltage engineering, while others believe that power is just one subset of electrical engineering (and indeed the term power engineering is used in that industry). Again, in recent years there has been a growth of new separate-entry degree courses such as information and communication engineering, often followed by academic departments of similar name.
Most of the European universities now refer electrical engineering as power engineers and make distinction between both Electrical and Electronics Engineering. Beginning in the 1980s, the term computer engineer was often used to refer to electronic or information engineers; however, computer engineering is now considered more a subset of electronic engineering and the term is becoming archaic.
History of electronic engineering
The modern discipline of electronic engineering was to a large extent born out of radio and television development and from the large amount of Second World War development of defence systems and weapons. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge. In the UK, the subject of electronic engineering became distinct from electrical engineering as a university degree subject around 1960. Students of electronics and related subjects like radio and telecommunications before this time had to enroll in the electrical engineering department of the university as no university had departments of electronics. Electrical engineering was the nearest subject with which electronic engineering could be aligned, although the similarities in subjects covered (except mathematics and electromagnetism) lasted only for the first year of the three-year course.
Early electronics
In 1893, Nikola Tesla made the first public demonstration of radio communication. Addressing the Franklin Institute in Philadelphia and the National Electric Light Association, he described and demonstrated in detail the principles of radio communication. In 1896, Guglielmo Marconi went on to develop a practical and widely used radio system. In 1904, John Ambrose Fleming, the first professor of electrical Engineering at University College London, invented the first radio tube, the diode. One year later, in 1906, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode.
Electronics is often considered to have begun when Lee De Forest invented the vacuum tube in 1907 . Within 10 years, his device was used in radio transmitters and receivers as well as systems for long distance telephone calls. Vacuum tubes remained the preferred amplifying device for 40 years, until researchers working for William Shockley at Bell Labs invented the transistor in 1947 . In the following years, transistors made small portable radios, or transistor radios, possible as well as allowing more powerful mainframe computers to be built. Transistors were smaller and required lower voltages than vacuum tubes to work.In the interwar years the subject of electronics was dominated by the worldwide interest in radio and to some extent telephone and telegraph communications. The terms 'wireless' and 'radio' were then used to refer to anything electronic. There were indeed few non-military applications of electronics beyond radio at that time until the advent of television. The subject was not even offered as a separate university degree subject until about 1960.
Prior to the second world war, the subject was commonly known as 'radio engineering' and basically was restricted to aspects of communications and RADAR, commercial radio and early television. At this time, study of radio engineering at universities could only be undertaken as part of a physics degree. Later, in post war years, as consumer devices began to be developed, the field broadened to include modern TV, audio systems, Hi-Fi and latterly computers and microprocessors. In the mid to late 1950s, the term radio engineering gradually gave way to the name electronic engineering, which then became a stand alone university degree subject, usually taught alongside electrical engineering with which it had become associated due to some similarities.
Before the invention of the integrated circuit in 1959, electronic circuits were constructed from discrete components that could be manipulated by hand. These non-integrated circuits consumed much space and power, were prone to failure and were limited in speed although they are still common in simple applications. By contrast, integrated circuits packed a large number — often millions — of tiny electrical components, mainly transistors, into a small chip around the size of a coin.
Tubes or valves
The vacuum tube detector
The invention of the triode amplifier, generator, and detector made audio communication by radio practical. (Reginald Fessenden's 1906 transmissions used an electro-mechanical alternator.) The first known radio news program was broadcast 31 August 1920 by station 8MK, the unlicensed predecessor of WWJ (AM) in Detroit, Michigan. Regular wireless broadcasts for entertainment commenced in 1922 from the Marconi Research Centre at Writtle near Chelmsford, England.
While some early radios used some type of amplification through electric current or battery, through the mid 1920s the most common type of receiver was the crystal set. In the 1920s, amplifying vacuum tubes revolutionized both radio receivers and transmitters.
Phonographs and radiogrammes
This is the early name for record players or combined radios and record players.
Television
In 1928 Philo Farnsworth made the first public demonstration of purely electronic television. During the 1930s several countries began broadcasting, and after World War II it spread to millions of receivers, eventually worldwide.
Ever since then, electronics have been fully present in television devices. Nowadays, electronics in television have evolved to be the basics of almost every component inside TV’s.
One of the latest and most advance technologies in TV screens/displays has to do entirely with electronics principles, and it’s the OLED (organic light emitting diode) displays, and it’s most likely to replace LCD and Plasma technologies.
Radar and radio location
During World War II many efforts were expended in the electronic location of enemy targets and aircraft. These included radio beam guidance of bombers, electronic counter measures, early radar systems etc. During this time very little if any effort was expended on consumer electronics developments.
Computers
In 1941, Konrad Zuse presented the Z3, the world's first functional computer. In 1946, the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives. Early examples include the Apollo missions and the NASA moon landing.
Transistors
The invention of the transistor in 1947 by William B. Shockley, John Bardeen and Walter Brattain opened the door for more compact devices and led to the development of the integrated circuit in 1959 by Jack Kilby.
Microprocessors
In 1968, Marcian Hoff invented the microprocessor at Intel and thus ignited the development of the personal computer. Hoff's invention was part of an order by a Japanese company for a desktop programmable electronic calculator, which Hoff wanted to build as cheaply as possible. The first realization of the microprocessor was the Intel 4004, a 4-bit processor, in 1969, but only in 1973 did the Intel 8080, an 8-bit processor, make the building of the first personal computer, the MITS Altair 8800, possible.
Electronics
In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.
In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.
Integrated circuits and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.
Typical electronic engineering undergraduate syllabus
Apart from electromagnetics and network theory, other items in the syllabus are particular to electronics engineering course. Electrical engineering courses have other specialisms such as machines, power generation and distribution. Note that the following list does not include the large quantity of mathematics (maybe apart from the final year) included in each year's study.
Electromagnetics
Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Antennas: Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem, antenna gain.
Network Analysis
Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equatioons for networks.
Electronic devices and circuits
Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.
Analog Circuits: Equivalent circuits (large and small-signal) of diodes, BJTs, JFETs, and MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.
Digital circuits: of Boolean functions; logic gates digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.
Signals and systems
Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros frequency response, group delay, phase delay. Signal transmission through LTI systems. Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density, function analogy between vectors & functions.
Control systems
Basic control system components; block diagrammatic description, reduction of block diagrams - Mason's rule. Open loop and closed loop (negative unity feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Analysis of steady-state disturbance rejection and noise sensitivity.
Tools and techniques for LTI control system analysis and design: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. Discretization of continuous time systems using Zero-Order-Hold (ZOH) and ADC's for digital controller implementation. Limitations of digital controllers: aliasing. State variable representation and solution of state equation of LTI control systems. Linearization of Nonlinear dynamical systems with state-space realizations in both frequency and time domains. Fundamental concepts of controllability and observability for MIMO LTI systems. State space realizations: observable and controllable canonical form. Ackerman's formula for state-feedback pole placement. Design of full order and reduced order estimators.
Communications
Analog communication (UTC) systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne noise conditions.
Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), delta modulation (DM), digital modulation schemes-amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes, GSM, TDMA.
Education and training
Electronics engineers typically possess an academic degree with a major in electronic engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science or Bachelor of Applied Science depending upon the university. Many UK universities also offer Master of Engineering (MEng) degrees at undergraduate level.
The degree generally includes units covering physics, mathematics, project management and specific topics in electrical engineering. Initially such topics cover most, if not all, of the subfields of electronic engineering. Students then choose to specialize in one or more subfields towards the end of the degree.
Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science (MSc), Doctor of Philosophy in Engineering (PhD), or an Engineering Doctorate (EngD). The Master degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The Master and Engineer's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia.
In most countries, a Bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements (including work experience requirements) before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States and Canada), Chartered Engineer or Incorporated Engineer (in the United Kingdom, Ireland, India, South Africa and Zimbabwe), Chartered Professional Engineer (in Australia) or European Engineer (in much of the European Union).
Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electronic systems. Although most electronic engineers will understand basic circuit theory, the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI but are largely irrelevant to engineers working with macroscopic electrical systems.
Licensure, certification, and regulation
Some locations require a license for one to legally be called an electronics engineer, or an engineer in general. For example, in the United States and Canada "only a licensed engineer may seal engineering work for public and private clients". This requirement is enforced by state and provincial legislation such as Quebec's Engineers Act. In other countries, such as Australia, no such legislation exists. Practically all certifying bodies maintain a code of ethics that they expect all members to abide by or risk expulsion. In this way these organizations play an important role in maintaining ethical standards for the profession. Even in jurisdictions where licenses are not required, engineers are subject to the law. For example, much engineering work is done by contract and is therefore covered by contract law. In cases where an engineer's work fails he or she may be subject to the tort of negligence and, in extreme cases, the charge of criminal negligence. An engineer's work must also comply with numerous other rules and regulations such as building codes and legislation pertaining to environmental law.
In locations where licenses are not required, professional certification may be advantageous.
Professional bodies
Professional bodies of note for electrical engineers include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Electrical Engineers (IEE),now the Institution of Engineering and Technology(IET). The IEEE claims to produce 30 percent of the world's literature in electrical/electronic engineering, has over 370,000 members, and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each year. The IEE publishes 14 journals, has a worldwide membership of 120,000, certifies Chartered Engineers in the United Kingdom and claims to be the largest professional engineering society in Europe.
Modern electronic engineering
Electronic engineering in Europe is a very broad field that encompasses many subfields including those that deal with, electronic devices and circuit design, control systems, electronics and telecommunications, computer systems, embedded software etc. Many European universities now have departments of Electronics that are completely separate from
Subfields
Electronics engineering has many subfields. This section describes some of the most popular subfields in electronic engineering. Although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields. For more information on each of the following, click the read more... link.
Overview of electronic engineering
Electronic engineering involves the design and testing of electronic circuits that use the electronic properties of components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality.
Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information.
For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals.
Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fibre or free space.
Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer.
Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise.
Control engineering has a wide range of applications from the flight and propulsion systems of commercial aeroplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation.
Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. Read more...Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation.
The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier-Seebeck effect to measure the temperature difference between two points.
Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering. Read more...Computer engineering deals with the design of computers and computer systems. This may involve the design of new hardware, the design of PDAs or the use of computers to control an industrial plant. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline.
Desktop computers represent a tiny fraction of the devices a computer engineer might work on, as computer-like architectures are now found in a range of devices including video game consoles and DVD players. Read more... Project engineering
For most engineers not involved at the cutting edge of system design and development, technical work accounts for only a fraction of the work they do. A lot of time is also spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.
The workplaces of electronics engineers are just as varied as the types of work they do. Electronics engineers may be found in the pristine laboratory environment of a fabrication plant, the offices of a consulting firm or in a research laboratory. During their working life, electronics engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers.
Obsolescence of technical skills is a serious concern for electronics engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency. And these are mostly used in the field of consumer electronics products
Microelectronics

MicroprocessorMicroelectronics engineering deals with the design and microfabrication of very small electronic circuit components for use in an integrated circuit or sometimes for use on their own as a general electronic component. The most common microelectronic components are semiconductor transistors, although all main electronic components (resistors, capacitors, inductors) can be created at a microscopic level.
Microelectronic components are created by chemically fabricating wafers of semiconductors such as silicon (at higher frequencies, compound semiconductors like gallium arsenide and indium phosphide) to obtain the desired transport of electronic charge and control of current. The field of microelectronics involves a significant amount of chemistry and material science and requires the electronic engineer working in the field to have a very good working knowledge of the effects of quantum mechanics.
Signal processing

A Bayer filter on a CCD requires signal processing to get a red, green, and blue value at each pixel
Signal processing deals with the analysis and manipulations of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error detection and error correction of digitally sampled signals.
Signal Processing is a very mathematically oriented and intensive area forming the core of Digital Signal Processing (DSP) and it is rapidly expanding with new applications in every field of electrical engineering such as communications, control, radar, TV/Audio/Video engineering, power electronics and bio-medical engineering as many already existing analog systems are replaced with their digital counterparts.
Although in the classical era, analog signal processing only provided a mathematical description of a system to be designed, which is actually implemented by the analog hardware engineers, Digital Signal Processing both provides a mathematical description of the systems to be designed and also actually implements them (either by software programming or by hardware embedding) without much dependency on hardware issues, which exponentiates the importance and success of DSP engineering.
The deep and strong relations between signals and the information they carry, makes signal processing equivalent of information processing. Which is the reason why the field finds so many diversified applications. DSP processor ICs are found in every type of modern electronic systems and products including, SDTV | HDTV sets, radios and mobile communication devices, Hi-Fi audio equipments, Dolby noise reduction algorithms, GSM mobile phones, mp3 multimedia players, camcorders and digital cameras, automobile control systems, noise cancelling headphones, digital spectrum analyzers, intelligent missile guidance, radar, GPS based cruize control systems and all kinds of image processing, video processing, audio processing and speech processing systems...Just to mention a few of the possibly much more.
Telecommunications

Telecommunications engineering focuses on the transmission of information across a channel such as a coax cable, optical fiber or free space. Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer.
Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise.
Instrumentation

Radar gunInstrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier-Seebeck effect to measure the temperature difference between two points.
Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering.
Computers

Personal digital assistantComputer engineering deals with the design of computers and computer systems. This may involve the design of new hardware, the design of PDAs or the use of computers to control an industrial plant. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline. Desktop computers represent a tiny fraction of the devices a computer engineer might work on, as computer-like architectures are now found in a range of devices including video game consoles and DVD players.
Related disciplines
Mechatronics is an engineering discipline which deals with the convergence of electrical and mechanical systems. Such combined systems are known as electromechanical systems and have widespread adoption. Examples include automated manufacturing systems, heating, ventilation and air-conditioning systems and various subsystems of aircraft and automobiles.
The term mechatronics is typically used to refer to macroscopic systems but futurists have predicted the emergence of very small electromechanical devices. Already such small devices, known as micro electromechanical systems (MEMS), are used in automobiles to tell airbags when to deploy, in digital projectors to create sharper images and in inkjet printers to create nozzles for high definition printing. In the future it is hoped the devices will help build tiny implantable medical devices and improve optical communication.
Biomedical engineering is another related discipline, concerned with the design of medical equipment. This includes fixed equipment such as ventilators, MRI scanners and electrocardiograph monitors as well as mobile equipment such as cochlear implants, artificial pacemakers and artificial hearts.
Electronic component

Various components
An electronic component is a basic electronic element usually packaged in a discrete form with two or more connecting leads or metallic pads. Components are intended to be connected together, usually by soldering to a printed circuit board, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly (resistor, capacitor, transistor, diode etc.) or in more or less complex groups as integrated circuits (operational amplifier, resistor array, logic gate etc.)
Components
Very often electronic components are mechanically stabilized, improved in insulation properties and protected from environmental influence by being enclosed in synthetic resinComponents may be Passive or Active:
Passive components are those that do not have gain or directionality. In the Electrical industry they are called Electrical elements or electrical components
Active components are those that have gain or directionality, in contrast to passive components, which have neither. They include Semiconductors (Solid State Devices) and Thermionic Valves (Vacuum Tubes)
Terminals and connectors
Devices to make electrical connection
Terminal
Connector
Socket
Screw terminal, Terminal Blocks
Header
Closed
Cords
Cables with connectors or terminals at their ends
Power cord
Patch cord
Test lead
Switches
Components that may be made to either conduct (closed) or not (open)
Switch - manually operated switch
Keypad - small array of pushbutton switches
Relay - Electrically operated switch. This is a mechanical component, unlike the Solid State Relay
Reed switch - Magnetically activated switch
Thermostat - Thermally activated switch
Circuit Breaker - Over-current activated switch
Limit Switch - Mechanically activated switch
Mercury switch
Centrifugal switch
Resistors
Components used to resist current.
See the Transducer section below for resistors used to sense environmental conditions (Thermistor, Photoresistor, RTD...)
See the Protection section below for resistors used for current or voltage limiting (MOV, Inrush Limiters...)
Resistor - fixed value
Resistor network - array of resistors in one package
Trimmer - Small variable resistor
Potentiometer, Rheostat - variable resistor
Heater - heating element
Resistance wire - wire of high-resistance material, similar to heating element
Thermistor - temperature-varied resistor
Protection devices
Passive components that protect circuits from excessive currents of voltages
While these components technically belong to the Wire, Resistor and Vacuum classes, they are grouped here based on their use.
Active components that perform a protection function are in the Semiconductor class, below.
Fuse - Over-current protection, one time use
Resettable fuse (PolySwitch, self-resetting fuse)- Over-current protection, resettable
Metal Oxide Varistor, Surge Absorber (MOV) - Over-voltage protection. These are passive components, unlike the TVS
Inrush current limiter - protection against initial Inrush current
Gas Discharge Tube - protection against high voltage surges
Circuit Breaker - Over-current activated switch
Spark gap - two electrodes with a gap in between to create arcing
Filament lamp
GFCI or RCD
Capacitors
Components that store electrical charge in an electrical field. Capacitors are used for filtration in the electronic circuits. Capacitors in general pass changing (e.g. AC) and block unchanging (e.g. DC) voltage levels.
Capacitor - fixed capacitance
Capacitor network (array)
Variable capacitor - change the capacitance
Varicap diode - variable capacitor come diode
Magnetic (inductive) devices
Electrical components that use magnetism
Inductor, coil, choke
Variable inductor
Saturable Inductor
Transformer
Magnetic amplifier (toroid)
Ferrite impedances, beads
Motor
Solenoid
Speaker
Networks
Components that use more than one type of passive component
RC network - forms an RC circuit, used in Snubbers
LC Network - forms an LC circuit, used in tuneable transformers and RFI filters
Piezoelectric devices, crystals, resonators
Passive components that use piezoelectric effect
Components that use the effect to generate or filter high frequencies
Crystal - Is a fudge crystal used to generate precise frequencies (See the Modules class below for complete oscillators)
Ceramic resonator - Is a ceramic crystal used to generate semi-precise frequencies
Ceramic filter - Is a ceramic crystal used to filter a band of frequencies such as in radio receivers
Surface Acoustic Wave (SAW) filters
Components that use the effect as mechanical Transducers.
Ultrasonic motor - Electric motor that uses the piezoelectric effect
For piezo buzzers and microphones, see the Transducer class below
Power sources
Sources of electrical power
Battery - acid- or alkali-based power supply
Fuel cell - an electrochemical generator
Power supply - usually a mains hook-up
Photovoltaic device - generates electricity from light
Generator - an electromechanical power source
Transducers, sensors, detectors
Transducers generate physical effects when driven by an electrical signal, or vice-versa.
Sensors (detectors) are transducers that react to environmental conditions by changing their electrical properties or generating an electrical signal.
The Transducers listed here are single electronic components (as opposed to complete assemblies), and are passive (see Semiconductors and Tubes for active ones). Only the most common ones are listed here.
Audio (see also Piezoelectric devices)
Microphone - Magnetic, electrostatic (capacitive), piezoelectric and others. Convert audio to electrical signal
Loudspeaker - Magnetic or piezoelectric device to generate full audio
Buzzer - Magnetic or piezoelectric sounder to generate tones
Position, motion
Linear variable differential transformer (LVDT) - Magnetic - detects linear position
Rotary encoder, Shaft Encoder - Optical, magnetic, resistive or switches - detects absolute or relative angle or rotational speed
Inclinometer - Capacitive - detects angle with respect to gravity
Motion sensor, Vibration sensor
Flowmeter - detects flow in liquid or gas
Force, torque
Strain gauge - Piezoelectric or resistive - detects squeezing, stretching, twisting
Accelerometer - Piezoelectric - detects acceleration, gravity
Thermal
Thermocouple, thermopile - Wires that generate a voltage proportional to delta temperature
Thermistor - Resistor whose resistance changes with temperature, up PTC or down NTC
Resistance Temperature Detector (RTD) - Wire whose resistance changes with temperature
Bolometer
Thermal cutoff - Switch that is opened or closed when a set temperature is exceeded
Magnetic field (see also Hall Effect in semiconductors)
Magnetometer, Gaussmeter
Humidity
Hygrometer
Electromagnetic, light
Photoresistor - Light dependent resistor (LDR)
Solid State components, SemiconductorsElectronic control components with no moving parts. Active components DiodesA device which conducts electricity in only one direction.
Standard Diode, Rectifier, Bridge Rectifier
Schottky Diode, Hot Carrier Diode - superfast diode with low forward voltage drop
Zener Diode - lets electricity flow "backwards" if it is suitably high in voltage
Transient Voltage Suppression Diode (TVS), Unipolar or Bipolar - used to block high-voltage spikes
Varactor, Tuning diode, Varicap, Variable Capacitance Diode - A diode come capacitor
Light Emitting Diode (LED) - A diode which gives out light
LASER Diode - A laser LED
Photodiode - Only passes power when in light
Solar Cell, photovoltaic cell, PV array or panel
Avalanche Photodiode
Diode for Alternating Current (DIAC, Trigger Diode, SIDAC)
Current source Diode
Peltier cooler
TransistorsBipolar transistors
Bipolar Junction Transistor (BJT, "transistor") - NPN or PNP
Photo transistor
Darlington transistor - NPN or PNP
Photo Darlington
Sziklai pair (Compound transistor, complementary Darlington)
Field effect transistor (FET)
Junction Field Effect Transistor (JFET) - N-CHANNEL or P-CHANNEL
Metal Oxide Semiconductor FET (MOSFET) - N-CHANNEL or P-CHANNEL
MEtal Semiconductor FET (MESFET)
High Electron Mobility Transistor (HEMT)
Thyristors
UniJunction Transistor (UJT)
Programmable UniJunction Transistor (PUT)
Silicon Controlled Rectifier (SCR)
Static Induction Transistor/Thyristor (SIT, SITh)
TRIode for Alternating Current (TRIAC)
Composite transistors
Insulated Gate Bipolar Transistor (IGBT)--
Integrated circuitsDigital
Analog
Hall effect sensor - Senses a magnetic field
Current sensor - Senses a current through it
Hybrid CircuitsOptoelectronics
Opto-Isolator, Opto-Coupler, Photo-Coupler - Photodiode, BJT, JFET, SCR, TRIAC, Zero-crossing TRIAC, Open collector IC, CMOS IC, Solid State Relay (SSR)
Opto Switch, Opto Interrupter, Optical Switch, Optical Interrupter, Photo switch, Photo Interrupter
LED Display - Seven-segment display, Sixteen-segment display, Dot matrix display
Display technologies
Current:
Filament lamp (indicator lamp)
Vacuum fluorescent display (VFD) (preformed characters, 7 segment, starburst)
Cathode ray tube (CRT) (dot matrix scan (eg computer monitor), radial scan (eg radar), arbitrary scan (eg oscilloscope)) (monochrome & colour)
LCD (preformed characters, dot matrix) (passive, TFT) (monochrome, colour)
Neon (individual, 7 segment display)
LED (individual, 7 segment display, starburst display, dot matrix)
Flap indicator (numeric, preprinted messages)
Plasma display (dot matrix)
Obsolete:
Filament lamp 7 segment display (aka 'minitron')
Nixie Tube
Dekatron (aka glow transfer tube)
Magic eye indicator
Penetron (a 2 colour see-through CRT)
Thermionic Valve, Vacuum TubeActive devices that operate in vacuum
Diode
Triode
Tetrode
Pentode
Hexode
Pentagrid
Octode
Barretter
Nuvistor
Compactron
MicrowaveKlystron
Magnetron
OpticalPhotodiode
Cathode ray tube (CRT)
Vacuum fluorescent display (VFD)
Photomultiplier tube
Discharge devices
Gas discharge tube
Obsolete:
Mercury arc rectifier
Voltage regulator tube
Nixie tube
Thyratron
Ignitron
Assemblies, modules
Multiple electronic components assembled in a device that is in itself used as a component
Oscillator
Display devices
Liquid crystal display (LCD)
Filter
Antennas
Elemental dipole
Biconical
Yagi
Phased array
Magnetic dipole (loop)
Parabolic dish
Feedhorn, Waveguide
Prototyping aids
Wire-wrap
Breadboard
Mechanical accessories
Enclosure
Heat sink
Heatsink paste & pads
Fan
Other
Printed circuit boards
Lamp
Memristor
Obsolete:
Carbon amplifier (see Carbon microphones used as amplifiers)
Carbon arc (negative resistance device)
Dynamo (historic rf generator)
Standard abbreviations
It has been suggested that circuit diagram#European and Australian codes be merged into this article or section. (Discuss)
Component name abbreviations widely used in industry:
AE: aerial, antenna
B: battery
BR: bridge rectifier
C: capacitor
CRT:cathode ray tube
D or CR: diode
F: fuse
GDT: gas discharge tube
IC: integrated circuit
J: wire link
JFET: junction gate field-effect transistor
L: inductor
LCD:Liquid crystal display
LDR: light dependent resistor
LED: light emitting diode
LS: speaker
M: motor
MCB: circuit breaker
Mic: microphone
Ne: neon lamp
OP: Operational Amplifier
PCB: printed circuit board
PU: pickup
Q: transistor
R: resistor
RLA: RY: relay
SCR: silicon controlled rectifier
FET:field effect transistor
MOSFET:Metal oxide semiconductor field effect transistor
TFT:thin film transistor(display)
VLSI:very large scale integration
DSP:digital signal processor
SW: switch
T: transformer
TH: thermistor
TP: test point
Tr: transistor
U: integrated circuit
V: valve (tube)
VC: variable capacitor
VFD: vacuum fluorescent display
VR: variable resistor
X: crystal, ceramic resonator
XMER: transformer
XTAL: crystal
Z: zener diode
Original Ampère's circuital law

An electric current produces a magnetic field.
In its historically original form, Ampère's Circuital Law relates the magnetic field to its electric current source. The law can be written in two forms, the "integral form" and the "differential form". The forms are equivalent, and related by the Kelvin-Stokes theorem.
Integral form
In SI units, (the version in cgs units is in a later section), the "integral form" of the original Ampère's circuital law is:

or equivalently,

where:
is the closed line integral around the closed curve C.
is the magnetic field in tesla.
is the vector dot product.
is an infinitesimal element (differential) of the curve C (i.e. a vector with magnitude equal to the length of the infinitesimal line element, and direction given by the tangent to the curve C, see below),
denotes an integral over the surface S enclosed by the curve C (see below). The double integral sign is meant simply to denote that the integral is two-dimensional in nature.
is the magnetic constant also called the absolute permeability of free space.
is the free current density through the surface S enclosed by the curve C
is the vector area of an infinitesimal element of surface S (that is, a vector with magnitude equal to the area of the infinitesimal surface element, and direction normal to surface S. The direction of the normal must correspond with the orientation of C by the right hand rule, see below for further discussion),
is the net free current that penetrates through the surface S.
There are a number of ambiguities in the above definitions that warrant elaboration.
First, three of these terms are associated with sign ambiguities: the line integral could go around the loop in either direction (clockwise or counterclockwise); the vector area could point in either of the two directions normal to the surface; and Ienc is the net current passing through the surface S, meaning the current passing through in one direction, minus the current in the other direction--but either direction could be chosen as positive. These ambiguities are resolved by the right-hand rule: When the index-finger of the right-hand points along the direction of line-integration, the outstretched thumb points in the direction that must be chosen for the vector area , and current passing in that same direction must be counted as positive. The right hand grip rule can also be used to determine the signs.
Second, there are infinitely many possible surfaces S that have the curve C as their border. (Imagine a soap film on a wire loop, which can be deformed by blowing gently at it.) Which of those surfaces is to be chosen? If the loop does not lie in a single plane, for example, there is no one obvious choice. The answer is that it does not matter; it can be proven that any surface with boundary C can be chosen.
Differential form
By the Kelvin-Stokes theorem, this equation can also be written in a "differential form". Again, this equation only applies in the case where the electric field is constant in time; see below for the more general form. In SI units, the equation states:

where
is the curl operator.
Note on free current versus bound current
The electric current that arises in the simplest textbook situations would be classified as "free current"—for example, the current that passes through a wire or battery. In contrast, "bound current" arises in the context of bulk materials that can be magnetized and/or polarized. (All materials can to some extent.)
When a material is magnetized (for example, by placing it in an external magnetic field), the electrons remain bound to their respective atoms, but behave as if they were orbiting the nucleus in a particular direction, creating a microscopic current. When the currents from all these atoms are put together, they create the same effect as a macroscopic current, circulating perpetually around the magnetized object. This magnetization current JM is one contribution to "bound current".
The other source of bound current is bound charge. When an electric field is applied, the positive and negative bound charges can separate over atomic distances in polarizable materials, and when the bound charges move, the polarization changes, creating another contribution to the "bound current", the polarization current JP.
The total current density J due to free and bound charges is then:

with Jf the "free" or "conduction" current density.
All current is fundamentally the same, microscopically. Nevertheless, there are often practical reasons for wanting to treat bound current differently from free current. For example, the bound current usually originates over atomic dimensions, and one may wish to take advantage of a simpler theory intended for larger dimensions. The result is that the more microscopic Ampère's law, expressed in terms of B and the microscopic current (which includes free, magnetization and polarization currents), is sometimes put into the equivalent form below in terms of H and the free current only. For a detailed definition of free current and bound current, and the proof that the two formulations are equivalent, see the "proof" section below.
Shortcomings of the original formulation of Ampère's circuital law
There are two important issues regarding Ampère's law that require closer scrutiny. First, there is an issue regarding the continuity equation for electrical charge. There is a theorem in vector calculus that states the divergence of a curl must always be zero. Hence ∇·(∇×B) = 0 and so the original Ampère's law implies that ∇·J = 0. But in general ∇·J = −∂ρ / ∂t, which is non-zero for a time-varying charge density. An example occurs in a capacitor circuit where time-varying charge densities exist on the plates.
Second, there is an issue regarding the propagation of electromagnetic waves. For example, in free space, where J = 0, Ampère's law implies that∇×B = 0, but instead ∇×B = −(1/c2) ∂E / ∂t.
To treat these situations, the contribution of displacement current must be added to the "free current" term in Ampère's law.
James Clerk Maxwell conceived of displacement current as a polarization current in the dielectric vortex sea, which he used to model the magnetic field hydrodynamically and mechanically. He added this displacement current to Ampère's circuital law at equation (112) in his 1861 paper On Physical Lines of Force.
Displacement current
In free space, the displacement current is related to the time rate of change of electric field.
In a dielectric the above contribution to displacement current is present too, but a major contribution to the displacement current is related to the polarization of the individual molecules of the dielectric material. Even though charges cannot flow freely in a dielectric, the charges in molecules can move a little under the influence of an electric field. The positive and negative charges in molecules separate under the applied field, causing an increase in the state of polarization, expressed as the polarization density P. A changing state of polarization is equivalent to a current.
Both contributions to the displacement current are combined by defining the displacement current as:

where the electric displacement field is defined as:

where ε0 is the electric constant and P is the polarization density. Substituting this form for D in the expression for displacement current, it has two components:

The first term on the right hand side is present everywhere, even in a vacuum. It doesn't involve any actual movement of charge, but it nevertheless has an associated magnetic field, as if it were an actual current. Some authors apply the name displacement current to only this contribution.
The second term on the right hand side is the displacement current as originally conceived by Maxwell, associated with the polarization of the individual molecules of the dielectric material.
Maxwell's original explanation for displacement current focused upon the situation that occurs in dielectric media. In the modern post-aether era, the concept has been extended to apply to situations with no material media present, for example, to the vacuum between the plates of a charging vacuum capacitor. The displacement current is justified today because it serves several requirements of an electromagnetic theory: correct prediction of magnetic fields in regions where no free current flows; prediction of wave propagation of electromagnetic fields; and conservation of electric charge in cases where charge density is time-varying.
Extending the original law: the Maxwell-Ampère equation
Next Ampère's equation is extended by including the polarization current, thereby remedying the limited applicability of the original Ampère's circuital law.
Treating free charges separately from bound charges, Ampère's equation including Maxwell's correction in terms of the H-field is (the H-field is used because it includes the magnetization currents, so JM does not appear explicitly, see H-field and also Note):

(integral form), where:
H is the magnetic H field (also called "auxiliary magnetic field", "magnetic field intensity", or just "magnetic field",
D is the electric displacement field
Jf is the enclosed conduction current or free current density,
or (differential form):

On the other hand, treating all charges on the same footing (disregarding whether they are bound or free charges), the generalized Ampère's equation (or Maxwell-Ampère equation) is (see the "proof" section below):

(integral form), or (differential form):

where J includes magnetization current density as well as conduction and polarization current densities. That is, the current density on the right side of the Ampère-Maxwell equation is:

where current density JD is the displacement current, and J is the current density contribution actually due to movement of charges, both free and bound. Because ∇·D = ρ, the charge continuity issue with Ampère's original formulation is no longer a problem. Because of the term in ε0∂E / ∂t, wave propagation in free space now is possible.
With the addition of the displacement current, Maxwell was able to hypothesize (correctly) that light was a form of electromagnetic wave. See electromagnetic wave equation for a discussion of this important discovery.
Proof of equivalence
Proof that the formulations of Ampère's law in terms of free current are equivalent to the formulations involving total current.

is equivalent to the equation

Note that we're only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the Kelvin-Stokes theorem.
We introduce the polarization density P, which has the following relation to E and D:

Next, we introduce the magnetization density M, which has the following relation to B and H:

and the following relation to the bound current:


where

is called the magnetization current density, and

is the polarization current density. Taking the equation for B:



Consequently, referring to the definition of the bound current:


as was to be shown.
Ampère's law in cgs units
In cgs units, the integral form of the equation, including Maxwell's correction, reads

where c is the speed of light.
The differential form of the equation (again, including Maxwell's correction) is

Coulomb's law
Coulomb's law, developed in the 1780s by French physicist Charles Augustin de Coulomb, may be stated in scalar form as follows:
The magnitude of the electrostatic force between two point electric charges is directly proportional to the product of the magnitudes of each charge and inversely proportional to the square of the distance between the charges.
Scalar form

Diagram describing the basic mechanism of Coulomb's law; like charges repel each other and opposite charges attract each other.

Coulomb's torsion balanceIf one does not require the specific direction of the force then the simplified, scalar, version of Coulomb's law will suffice. The magnitude of the force on a charge, , due to the presence of a second charge, , is given by the magnitude of
,
where is the separation of the charges and is the electric constant. A positive force implies a repulsive interaction, while a negative force implies an attractive interaction.
The prefactor, termed the Coulomb's constant (), is:

  Nm2C−2 (also mF−1).
In SI units the speed of light in vacuum c0 is defined as the numerical value c0 = 299 792 458 m s−1 (See c0) and the magnetic constant μ0 is defined as 4π x 10−7 H · m−1 (See μ0), leading to the definition for the electric constant of ε0 = 1/(μ0c02) ≈ 8.854 187 817 x 10−12 F m−1 (See NIST ε0). In cgs units, the unit charge, esu of charge or statcoulomb, is defined so that this Coulomb force constant is 1.
This formula says that the magnitude of the force is directly proportional to the magnitude of the charges of each object and inversely proportional to the square of the distance between them. The exponent in Coulomb's Law has been found to differ from −2 by less than one in a billion.
When measured in units that people commonly use (such as SI—see International System of Units), the electrostatic force constant, , is numerically much much larger than the universal gravitational constant .This means that for objects with charge that is of the order of a unit charge (C) and mass of the order of a unit mass (kg), the electrostatic forces will be so much larger than the gravitational forces that the latter force can be ignored. This is not the case when Planck units are used and both charge and mass are of the order of the unit charge and unit mass. However, charged elementary particles have mass that is far less than the Planck mass while their charge is about the Planck charge so that, again, gravitational forces can be ignored. For example, the electrostatic force between an electron and a proton, which constitute a hydrogen atom, is almost 40 orders of magnitude greater than the gravitational force between them.
Coulomb's law can also be interpreted in terms of atomic units with the force expressed in Hartrees per Bohr radius, the charge in terms of the elementary charge, and the distances in terms of the Bohr radius.
Electric field
It follows from the Lorentz Force Law that the magnitude of the electric field created by a single point charge is given by

For a positive charge , the direction of points along lines directed radially away from the location of the point charge, while the direction is the opposite for a negative charge. The units of electric field are volts per meter or newtons per coulomb.
Vector form
In order to obtain both the magnitude and direction of the force on a charge, at position , experiencing a field due to the presence of another charge, at position , the full vector form of Coulomb's law is required.
,
where is the separation of the two charges. Note that this is simply the scalar definition of Coulomb's law with the direction given by the unit vector, , parallel with the line from charge to charge .
If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ; the charges repel each other. If the charges have opposite signs then the product is negative and the direction of the force on is given by ; the charges attract each other.
System of discrete charges
The principle of linear superposition may be used to calculate the force on a small test charge, , due to a system of discrete charges:
,
where and are the magnitude and position respectively of the charge, is a unit vector in the direction of (a vector pointing from charge to charge ), and is the magnitude of (the separation between charges and ).
Continuous charge distribution
For a charge distribution an integral over the region containing the charge is equivalent to an infinite summation, treating each infinitesimal element of space as a point charge .
For a linear charge distribution (a good approximation for charge in a wire) where gives the charge per unit length at position , and is an infinitesimal element of length,
.
For a surface charge distribution (a good approximation for charge on a plate in a parallel plate capacitor) where gives the charge per unit area at position , and is an infinitesimal element of area,
.
For a volume charge distribution (such as charge within a bulk metal) where gives the charge per unit volume at position , and is an infinitesimal element of volume,
.
The force on a small test charge at position is given by
.
Graphical representation
Below is a graphical representation of Coulomb's law, when . The vector is the force experienced by . The vector is the force experienced by . Their magnitudes will always be equal. The vector is the displacement vector between two charges ( and ).

A graphical representation of Coulomb's law.
Electrostatic approximation
In either formulation, Coulomb's law is fully accurate only when the objects are stationary, and remains approximately correct only for slow movement. These conditions are collectively known as the electrostatic approximation. When movement takes place, magnetic fields are produced which alter the force on the two objects. The magnetic interaction between moving charges may be thought of as a manifestation of the force from the electrostatic field but with Einstein's theory of relativity taken into consideration.
Table of derived quantities
Particle property Relationship Field property
Vector quantity Force (on 1 by 2)

Electric field (at 1 by 2)

Relationship
Scalar quantity Potential energy (at 1 by 2)

Potential (at 1 by 2)


Приложенные файлы

  • docx file 20
    тексты электрикам
    Размер файла: 754 kB Загрузок: 1

Добавить комментарий