МКОУ «Калиновская средняя общеобразовательная школа»
ПРИНЯТА
педагогическим советом МКОУ "Калиновская средняя общеобразовательная школа"
Протокол от «____»___________20__ г. №____
УТВЕРЖДЕНА
приказом директора МКОУ "Калиновская средняя общеобразовательная школа"
от «____»______________20___ г.
№___
Директор
____________И.А.Барышников
РАБОЧАЯ ПРОГРАММА
по физике
10 класс
2016-2017 учебный год
Общее количество часов 175.
Составитель: Башканов А.П., учитель физики и информатики, высшая квалификационная категория
Программа рассмотрена на заседании методического объединения учителей естественно-математического цикла и рекомендована для принятия педагогическим советом (протокол от «___»________20___ года №____)
Руководитель методического объединения Дунайцева А.В._______________
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Рабочая программа по физике 10 класса составлена на основе: Базисного учебного плана образовательных школ Российской Федерации (Приказ Мин. образования РФ от 9.03.2004), Федерального компонента государственного образовательного стандарта среднего (полного) общего образования (Приказ Мин. Образования РФ от 5.03.2004),Примерной программы среднего (полного) общего образования физике (профильный уровень) и авторской программы Г.Я. Мякишева с УМК, основной образовательной программы ООО МКОУ «Калиновская средняя общеобразовательная школа». Данный учебно-методический комплект предназначен для преподавания физики в 10-11 классах с углубленным изучением предмета. В учебниках на современном уровне и с учетом новейших достижений науки изложены основные разделы физики. Особое внимание уделяется изложению фундаментальных и наиболее сложных вопросов школьной программы. Программа разработана с таким расчетом, чтобы обучающиеся приобрели достаточно глубокие знания физики и в вузе смогли посвятить больше времени профессиональной подготовке по выбранной специальности. Автор программы: Г.Я.Мякишев.
Преподавание ведется по учебнику: Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. Физика – 10, М.: Просвещение, 2013 г. Программа рассчитана на 5 часов в неделю.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта на базовом уровне; дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся; определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
В программе детально раскрыто содержание изучаемого материала, а также пути формирования системы знаний, умений и способов деятельности, развития и социализации учащихся. Данная программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителей, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.
Общая характеристика предмета
Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания». Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире. Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ и других учебных предметов. Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механики, молекулярной физики, электродинамики, электромагнитных колебаний и волн, квантовой физики.
Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.
Цели изучения физики
Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:
усвоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;
развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
воспитание убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации; в необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания; готовности к морально-этической оценке использования научных достижений; чувства ответственности за защиту окружающей среды;
использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.
На уроках физики для достижения хорошего качества знаний применяются различные технологии обучения:
проблемное обучение (учащиеся приходят к необходимому утверждению или выводу при решении проблемной задачи);
дифференцированное обучение (при изучении, закреплении, проверке материала, учащимся предлагаются разноуровневые задания);
опережающее обучение (учащиеся сообщают сведения из разделов, изучающихся позже);
личностно - ориентированное обучение (отбор учебного материала с учетом возрастных, психологических, физиологических особенностей учащихся, их общего развития и подготовки).
Школьный курс физики не только является источником фундаментальных знаний о явлениях и законах природы, но и вносит существенный вклад в развитие ученика, формирует у него диалектическое мышление, учит ориентироваться в шкале культурных ценностей.
Работа над методической темой учебного заведения при изучении физики направлена на:
- развитие творческих способностей учащихся через овладение учащимися разнообразными способами деятельности;
- решение разнообразных классов задач из различных разделов курса физики, в том числе задач, требующих поиска пути и способов решения;
- вовлечение учащихся в исследовательскую деятельность, усовершенствование экспериментальных умений и навыков, развитие идей, обобщение, постановку и формулирование новых задач;
- ясное, точное, грамотное изложение своих мыслей в устной и письменной речи с использованием словесного, символического и графического методов;
- проведение доказательных рассуждений, аргументации, выдвижение гипотез и их обоснование;
- формирование умений делать самостоятельные выводы,
- поиск, систематизацию, анализ и классификацию информации, использование разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Совместная деятельность учащихся и педагога способствует активизации познавательной деятельности учащихся и направлена на освоение экспериментального метода научного познания, владение определенной системой физических законов и понятий, умений воспринимать и перерабатывать учебную информацию, владеть понятиями и представлениями физики, связанными с жизнедеятельностью человека.
Место предмета в учебном плане
Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 207 учебных часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X классе 105 учебных часа из расчета 3 учебных часа в неделю. За счёт школьного компонента добавлено 2 часа.
В примерных программах предусмотрен резерв свободного учебного времени в объеме 14 учебных часов для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.
Данная программа соответствует Программе по физике, разработанной Министерством образования Российской Федерации.
Общеучебные умения, навыки и способы деятельности
Примерная программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:
Познавательная деятельность:
использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
овладение адекватными способами решения теоретических и экспериментальных задач;
приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
ОСНОВНОЕ СОДЕРЖАНИЕ
ОРГАНИЗАЦИЯ ОБЩЕОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА.
В курс физики 10 класса входят следующие разделы:
1. Механика
2. Молекулярная физика. Тепловые явления
3. Основы электродинамики.
В каждый раздел курса включен основной материал, глубокого и прочного усвоения которого следует добиваться, не загружая память учащихся множеством частных фактов. Некоторые вопросы разделов учащиеся должны рассматривать самостоятельно. Некоторые материалы даются в виде лекций. В основной материал 10 класса входят: законы кинематики, законы Ньютона, силы в природе, основные положения МКТ, основное уравнение МКТ газов, I и II закон термодинамики, закон Кулона, законы Ома.
В обучении отражена роль в развитии физики и техники следующих ученых: Г.Галилея, И.Ньютона, Д.И.Менделеева, М.Фарадея, Ш.Кулона, Г.Ома
На повышение эффективности усвоения основ физической науки направлено использование принципа генерализации учебного материала – такого его отбора и такой методики преподавания, при которых главное внимание уделено изучению основных фактов, понятий, законов, теорий.
Задачи физического образования решаются в процессе овладения школьниками теоретическими и прикладными знаниями при выполнении лабораторных работ и решении задач.
Программа предусматривает использование Международной системы единиц (СИ), а в ряде случаев и некоторых внесистемных единиц, допускаемых к применению.
Четверть
Примерные
сроки
Содержание программы
Кол.
часов
№ лаборатор.
работ
Контр.
работы
10 класс. (5 часов в неделю; всего 175 часов).
Физика и методы научного познания. (2 часа).
Механика. (74 часов).
I
1. Кинематика
2. Динамика
26
27(20)
II
Динамика
Законы сохранения в механике.
Статика.
27(7)16
5
Молекулярная физика. Тепловые явления. (45 часа).
II
1. Основы МКТ. Температура. Энергия теплового движения молекул
17(11)
III
1. Основы МКТ. Температура. Энергия теплового движения молекул.
2.Уравнение состояния идеального газа. Взаимные превращения жидкостей и газов.
3. Термодинамика.
17(6)
13
15
Электродинамика. (46 часов)
III
1. Электростатика.
20
IV
2. Законы постоянного тока
3.Электрический ток в различных средах.
4. Резерв времени
12
14
8
175
Физика и методы научного познания (2 ч)
Физика фундаментальная наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Моделирование явлений и объектов природы. Научные гипотезы. Роль математики в физике. Физические законы и теории, границы их применимости. Принцип соответствия. Физическая картина мира.
Механика (74 ч)
Механическое движение и его относительность. Способы описания механического движения. Материальная точка как пример физической модели. Перемещение, скорость, ускорение. Уравнения прямолинейного равномерного и равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Принцип суперпозиции сил. Законы динамики Ньютона и границы их применимости. Инерциальные системы отсчета. Принцип относительности Галилея. Силы тяжести, упругости, трения. Закон всемирного тяготения. Вес и невесомость. Первая космическая скорость. Искусственные спутники Земли. Законы сохранения импульса и механической энергии. Реактивное движение. Использование законов механики для объяснения движения небесных тел. Момент силы. Условия равновесия твердого тела. Работа. Мощность. Энергия. Теоремы о потенциальной и кинетической энергии. Механическая картина мира.
Демонстрации Зависимость траектории движения тела от выбора системы отсчета. Падение тел в воздухе и в вакууме. Явление инерции. Инертность тел. Сравнение масс взаимодействующих тел. Второй закон Ньютона. Измерение сил. Сложение сил. Взаимодействие тел. Невесомость и перегрузка. Зависимость силы упругости от деформации. Силы трения. Виды равновесия тел. Условия равновесия тел. Реактивное движение. Изменение энергии тел при совершении работы. Переход потенциальной энергии в кинетическую энергию и обратно.Лабораторные работ Изучение движения тел по окружности под действием сил тяжести и упругости. Изучение закона сохранения механической энергии.
Молекулярная физика. Тепловые явления. (45ч)
Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.
Уравнение состояния идеального газа. Изопроцессы. Границы применимости модели идеального газа.
Модель строения жидкостей. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения твердых тел. Механические свойства твердых тел. Дефекты кристаллической решетки. Изменения агрегатных состояний вещества.
Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Расчет количества теплоты при изменении агрегатного состояния вещества. Адиабатный процесс. Второй закон термодинамики и его статистическое истолкование. Принцип действия тепловых машин. КПД тепловой машины. Проблемы энергетики и охрана окружающей среды.
Демонстрации Механическая модель броуновского движения. Модель опыта Штерна. Изменение давления газа с изменением температуры при постоянном объеме. Изменение объема газа с изменением температуры при постоянном давлении. Изменение объема газа с изменением давления при постоянной температуре. Кипение воды при пониженном давлении. Психрометр и гигрометр. Явление поверхностного натяжения жидкости. Кристаллические и аморфные тела. Объемные модели строения кристаллов. Модели дефектов кристаллических решеток. Изменение температуры воздуха при адиабатном сжатии и расширении. Модели тепловых двигателей.Лабораторные работы Опытная проверка закона Гей-Люссака.
Электродинамика (46 ч).
Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Потенциал электрического поля. Потенциальность электростатического поля. Разность потенциалов. Напряжение. Связь напряжения и напряженности электрического поля. Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле. Энергия электрического поля.
Электрический ток. Последовательное и параллельное соединения проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Закон электролиза. Плазма. Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.
Демонстрации Электрометр. Проводники в электрическом поле. Диэлектрики в электрическом поле. Конденсаторы. Энергия заряженного конденсатора. Электроизмерительные приборы. Зависимость удельного сопротивления металлов от температуры. Зависимость удельного сопротивления полупроводников от температуры и освещения. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Транзистор. Термоэлектронная эмиссия. Электронно-лучевая трубка. Явлен
ПРИНЯТА
педагогическим советом МКОУ "Калиновская средняя общеобразовательная школа"
Протокол от «____»___________20__ г. №____
УТВЕРЖДЕНА
приказом директора МКОУ "Калиновская средняя общеобразовательная школа"
от «____»______________20___ г.
№___
Директор
____________И.А.Барышников
РАБОЧАЯ ПРОГРАММА
по физике
10 класс
2016-2017 учебный год
Общее количество часов 175.
Составитель: Башканов А.П., учитель физики и информатики, высшая квалификационная категория
Программа рассмотрена на заседании методического объединения учителей естественно-математического цикла и рекомендована для принятия педагогическим советом (протокол от «___»________20___ года №____)
Руководитель методического объединения Дунайцева А.В._______________
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Рабочая программа по физике 10 класса составлена на основе: Базисного учебного плана образовательных школ Российской Федерации (Приказ Мин. образования РФ от 9.03.2004), Федерального компонента государственного образовательного стандарта среднего (полного) общего образования (Приказ Мин. Образования РФ от 5.03.2004),Примерной программы среднего (полного) общего образования физике (профильный уровень) и авторской программы Г.Я. Мякишева с УМК, основной образовательной программы ООО МКОУ «Калиновская средняя общеобразовательная школа». Данный учебно-методический комплект предназначен для преподавания физики в 10-11 классах с углубленным изучением предмета. В учебниках на современном уровне и с учетом новейших достижений науки изложены основные разделы физики. Особое внимание уделяется изложению фундаментальных и наиболее сложных вопросов школьной программы. Программа разработана с таким расчетом, чтобы обучающиеся приобрели достаточно глубокие знания физики и в вузе смогли посвятить больше времени профессиональной подготовке по выбранной специальности. Автор программы: Г.Я.Мякишев.
Преподавание ведется по учебнику: Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. Физика – 10, М.: Просвещение, 2013 г. Программа рассчитана на 5 часов в неделю.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта на базовом уровне; дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся; определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
В программе детально раскрыто содержание изучаемого материала, а также пути формирования системы знаний, умений и способов деятельности, развития и социализации учащихся. Данная программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителей, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.
Общая характеристика предмета
Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания». Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире. Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ и других учебных предметов. Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механики, молекулярной физики, электродинамики, электромагнитных колебаний и волн, квантовой физики.
Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.
Цели изучения физики
Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:
усвоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;
развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
воспитание убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации; в необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания; готовности к морально-этической оценке использования научных достижений; чувства ответственности за защиту окружающей среды;
использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.
На уроках физики для достижения хорошего качества знаний применяются различные технологии обучения:
проблемное обучение (учащиеся приходят к необходимому утверждению или выводу при решении проблемной задачи);
дифференцированное обучение (при изучении, закреплении, проверке материала, учащимся предлагаются разноуровневые задания);
опережающее обучение (учащиеся сообщают сведения из разделов, изучающихся позже);
личностно - ориентированное обучение (отбор учебного материала с учетом возрастных, психологических, физиологических особенностей учащихся, их общего развития и подготовки).
Школьный курс физики не только является источником фундаментальных знаний о явлениях и законах природы, но и вносит существенный вклад в развитие ученика, формирует у него диалектическое мышление, учит ориентироваться в шкале культурных ценностей.
Работа над методической темой учебного заведения при изучении физики направлена на:
- развитие творческих способностей учащихся через овладение учащимися разнообразными способами деятельности;
- решение разнообразных классов задач из различных разделов курса физики, в том числе задач, требующих поиска пути и способов решения;
- вовлечение учащихся в исследовательскую деятельность, усовершенствование экспериментальных умений и навыков, развитие идей, обобщение, постановку и формулирование новых задач;
- ясное, точное, грамотное изложение своих мыслей в устной и письменной речи с использованием словесного, символического и графического методов;
- проведение доказательных рассуждений, аргументации, выдвижение гипотез и их обоснование;
- формирование умений делать самостоятельные выводы,
- поиск, систематизацию, анализ и классификацию информации, использование разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Совместная деятельность учащихся и педагога способствует активизации познавательной деятельности учащихся и направлена на освоение экспериментального метода научного познания, владение определенной системой физических законов и понятий, умений воспринимать и перерабатывать учебную информацию, владеть понятиями и представлениями физики, связанными с жизнедеятельностью человека.
Место предмета в учебном плане
Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 207 учебных часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X классе 105 учебных часа из расчета 3 учебных часа в неделю. За счёт школьного компонента добавлено 2 часа.
В примерных программах предусмотрен резерв свободного учебного времени в объеме 14 учебных часов для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.
Данная программа соответствует Программе по физике, разработанной Министерством образования Российской Федерации.
Общеучебные умения, навыки и способы деятельности
Примерная программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:
Познавательная деятельность:
использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
овладение адекватными способами решения теоретических и экспериментальных задач;
приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
ОСНОВНОЕ СОДЕРЖАНИЕ
ОРГАНИЗАЦИЯ ОБЩЕОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА.
В курс физики 10 класса входят следующие разделы:
1. Механика
2. Молекулярная физика. Тепловые явления
3. Основы электродинамики.
В каждый раздел курса включен основной материал, глубокого и прочного усвоения которого следует добиваться, не загружая память учащихся множеством частных фактов. Некоторые вопросы разделов учащиеся должны рассматривать самостоятельно. Некоторые материалы даются в виде лекций. В основной материал 10 класса входят: законы кинематики, законы Ньютона, силы в природе, основные положения МКТ, основное уравнение МКТ газов, I и II закон термодинамики, закон Кулона, законы Ома.
В обучении отражена роль в развитии физики и техники следующих ученых: Г.Галилея, И.Ньютона, Д.И.Менделеева, М.Фарадея, Ш.Кулона, Г.Ома
На повышение эффективности усвоения основ физической науки направлено использование принципа генерализации учебного материала – такого его отбора и такой методики преподавания, при которых главное внимание уделено изучению основных фактов, понятий, законов, теорий.
Задачи физического образования решаются в процессе овладения школьниками теоретическими и прикладными знаниями при выполнении лабораторных работ и решении задач.
Программа предусматривает использование Международной системы единиц (СИ), а в ряде случаев и некоторых внесистемных единиц, допускаемых к применению.
Четверть
Примерные
сроки
Содержание программы
Кол.
часов
№ лаборатор.
работ
Контр.
работы
10 класс. (5 часов в неделю; всего 175 часов).
Физика и методы научного познания. (2 часа).
Механика. (74 часов).
I
1. Кинематика
2. Динамика
26
27(20)
II
Динамика
Законы сохранения в механике.
Статика.
27(7)16
5
Молекулярная физика. Тепловые явления. (45 часа).
II
1. Основы МКТ. Температура. Энергия теплового движения молекул
17(11)
III
1. Основы МКТ. Температура. Энергия теплового движения молекул.
2.Уравнение состояния идеального газа. Взаимные превращения жидкостей и газов.
3. Термодинамика.
17(6)
13
15
Электродинамика. (46 часов)
III
1. Электростатика.
20
IV
2. Законы постоянного тока
3.Электрический ток в различных средах.
4. Резерв времени
12
14
8
175
Физика и методы научного познания (2 ч)
Физика фундаментальная наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Моделирование явлений и объектов природы. Научные гипотезы. Роль математики в физике. Физические законы и теории, границы их применимости. Принцип соответствия. Физическая картина мира.
Механика (74 ч)
Механическое движение и его относительность. Способы описания механического движения. Материальная точка как пример физической модели. Перемещение, скорость, ускорение. Уравнения прямолинейного равномерного и равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Принцип суперпозиции сил. Законы динамики Ньютона и границы их применимости. Инерциальные системы отсчета. Принцип относительности Галилея. Силы тяжести, упругости, трения. Закон всемирного тяготения. Вес и невесомость. Первая космическая скорость. Искусственные спутники Земли. Законы сохранения импульса и механической энергии. Реактивное движение. Использование законов механики для объяснения движения небесных тел. Момент силы. Условия равновесия твердого тела. Работа. Мощность. Энергия. Теоремы о потенциальной и кинетической энергии. Механическая картина мира.
Демонстрации Зависимость траектории движения тела от выбора системы отсчета. Падение тел в воздухе и в вакууме. Явление инерции. Инертность тел. Сравнение масс взаимодействующих тел. Второй закон Ньютона. Измерение сил. Сложение сил. Взаимодействие тел. Невесомость и перегрузка. Зависимость силы упругости от деформации. Силы трения. Виды равновесия тел. Условия равновесия тел. Реактивное движение. Изменение энергии тел при совершении работы. Переход потенциальной энергии в кинетическую энергию и обратно.Лабораторные работ Изучение движения тел по окружности под действием сил тяжести и упругости. Изучение закона сохранения механической энергии.
Молекулярная физика. Тепловые явления. (45ч)
Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.
Уравнение состояния идеального газа. Изопроцессы. Границы применимости модели идеального газа.
Модель строения жидкостей. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения твердых тел. Механические свойства твердых тел. Дефекты кристаллической решетки. Изменения агрегатных состояний вещества.
Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Расчет количества теплоты при изменении агрегатного состояния вещества. Адиабатный процесс. Второй закон термодинамики и его статистическое истолкование. Принцип действия тепловых машин. КПД тепловой машины. Проблемы энергетики и охрана окружающей среды.
Демонстрации Механическая модель броуновского движения. Модель опыта Штерна. Изменение давления газа с изменением температуры при постоянном объеме. Изменение объема газа с изменением температуры при постоянном давлении. Изменение объема газа с изменением давления при постоянной температуре. Кипение воды при пониженном давлении. Психрометр и гигрометр. Явление поверхностного натяжения жидкости. Кристаллические и аморфные тела. Объемные модели строения кристаллов. Модели дефектов кристаллических решеток. Изменение температуры воздуха при адиабатном сжатии и расширении. Модели тепловых двигателей.Лабораторные работы Опытная проверка закона Гей-Люссака.
Электродинамика (46 ч).
Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Потенциал электрического поля. Потенциальность электростатического поля. Разность потенциалов. Напряжение. Связь напряжения и напряженности электрического поля. Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле. Энергия электрического поля.
Электрический ток. Последовательное и параллельное соединения проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Закон электролиза. Плазма. Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.
Демонстрации Электрометр. Проводники в электрическом поле. Диэлектрики в электрическом поле. Конденсаторы. Энергия заряженного конденсатора. Электроизмерительные приборы. Зависимость удельного сопротивления металлов от температуры. Зависимость удельного сопротивления полупроводников от температуры и освещения. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Транзистор. Термоэлектронная эмиссия. Электронно-лучевая трубка. Явлен