«Активные методы преподавания математики»


Министерство общего и профессионального образования Ростовской области
Государственное автономное профессиональное образовательное учреждение
Ростовской области
«Ростовский колледж рекламы, сервиса и туризма «Сократ»
Доклад
«Активные методы преподавания математики»
Автор: Куликова Ольга Васильевна, преподаватель высшей квалификационной категории
Место работы: ГАПОУ РО «РКРСТ «Сократ»
г. Ростов-на-Дону
2016 г.
СОДЕРЖАНИЕ
С.
ВВЕДЕНИЕ2
1ОБЩЕТЕОРЕТИЧЕСКАЯ ЧАСТЬ3
1.1Активные методы ведения уроков3
ЗАКЛЮЧЕНИЕ8
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ9
ВВЕДЕНИЕ
Процессы глобализации, становление постиндустриального, информационного общества поставили перед школьным образованием новые задачи. Концепция модернизации российского образования на период до 2010 года ориентирует педагогов на формирование у школьников ключевых компетенций, опирающихся на фундаментальные знания, универсальные умения, опыт творческой деятельности и личной ответственности. Роль школы в решении этих задач определена в современных образовательных стандартах и примерных программах основного общего и среднего (полного) общего образования по всем учебным предметам. Сегодня учитель призван не только сформировать у обучающихся системные знания, но и научить применять усвоенные знания и умения в практической деятельности и повседневной жизни, создать условия для всестороннего развития личности. Для успешного решения задач модернизации образования необходимы новые подходы к конструированию содержания школьных предметов, совершенствование технологий и методик обучения. Одним из вариантов комплексного решения задач современного школьного образования являются учебные проекты, позволяющие формировать у учащихся способность к осуществлению практической деятельности – способность определять цель деятельности и планировать пути ее достижения, анализировать и оценивать результаты.
Активные методы и формы обучения — это методы и формы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным материалом. Активное обучение — предполагает использование такой системы форм и методов, которая направлена главным образом на самостоятельное овладение учащимися знаниями и умениями в процессе активной мыслительной и практической деятельности. Выделяют следующие отличительные особенности активного обучения: принудительная активизация мышления, когда обучаемый вынужден быть активным независимо от его желания; достаточно длительное время вовлечения обучаемых в учебный процесс, поскольку их активность должна быть не кратковременной и эпизодической, а в значительной степени устойчивой и длительной (т.е. в течение всего занятия); самостоятельная творческая выработка решений, повышенная степень мотивации и эмоциональности обучаемых; постоянное взаимодействие обучаемых и преподавателя с помощью прямых и обратных связей
ОБЩЕТЕОРИТЕЧЕСКАЯ ЧАСТЬ
Активные методы ведения уроков
Выделяют три уровня активности: активность воспроизведения — характеризуется стремлением обучаемого понять, запомнить, воспроизвести знания, овладеть способами применения по образцу; активность интерпретации — связана со стремлением обучаемого постичь смысл изучаемого, установить связи, овладеть способами применения знаний в измененных условиях, творческая активность — предполагает устремленность обучаемого к теоретическому осмыслению знаний, самостоятельный поиск решения проблем, интенсивное проявление познавательных интересов.
Учащиеся легче вникают, понимают и запоминают материал, который они изучали посредством активного вовлечения в учебный процесс. Исходя из этого, основные методические инновации связаны сегодня с применением именно интерактивных технологий. На данный момент разработано много разнообразных методов и форм обучения активного обучения:
Лабораторная работа — это самостоятельная работа учащихся, которая выполняется посредством наблюдений, сравнений, измерительных и вычислительных инструментов, составления таблиц, вычерчивания графиков, исследования математических формул, чертежей, фигур, с целью установления новых для учащихся математических фактов, являющихся основой для теоретических выводов и обобщений, и, впоследствии, получающее, по необходимости, строгое логическое доказательство.
Использование лабораторных работ при обучении математике помогут достичь следующих целей: образовательные: усвоение математических знаний, формирование практических умений и навыков, усвоение принципов действия и навыков использования различных счетных, измерительных и чертежных инструментов, совершенствование знаний учащихся и обучение их самостоятельному применению этих знаний, обучение решению практико-ориентированных задач; воспитательные: формирование аккуратности и ответственности за свою деятельность, активизация учебной деятельности исследовательского характера; развивающие: развитие наблюдательности, умения выдвигать и проверять гипотезы и предположения, опровергать ошибочные обобщения и суждения, развитие способности учащихся работать в коллективе, а также интереса к изучаемому предмету.
Дидактические игры — это вид учебных занятий, организуемых в виде учебных игр, реализующих ряд принципов игрового, активного обучения и отличающихся наличием правил, фиксированной структуры игровой деятельности и системы оценивания, один из методов активного обучения.
Игровому обучению присущи следующие черты: свободная развивающаяся деятельность, организуемая учителем (но протекающая без его диктата) и осуществляемая учениками по желанию, с удовольствием от самого процесса деятельности, а не за поощрение или оценку; творческая, импровизационная, активная по своему характеру деятельность; эмоционально напряженная, приподнятая, состязательная, конкурентная деятельность; деятельность, проходящая в рамках прямых и косвенных правил, отражающих содержание игры и элементов общественного опыта.
К важнейшим свойствам игры относят тот факт, что в игре и дети, и взрослые действуют так, как действовали бы в самых экстремальных ситуациях, на пределе сил преодоления трудности. Причем столь высокий уровень активности достигается ими, почти всегда добровольно, без принуждения.
Игровое обучение отличается от других педагогических технологий тем, что игра: хорошо известная, привычная и любимая форма деятельности для человека любого возраста; одно из наиболее эффективных средств активизации, вовлекающее участников в игровую деятельность за счет содержательной природы самой игровой ситуации, и способное вызывать у них высокое эмоциональное и физическое напряжение. В игре значительно легче преодолеваются трудности, препятствия, психологические барьеры; мотивационна по своей природе. По отношению к познавательной деятельности, она требует и вызывает у участников инициативу, настойчивость, творческий подход, воображение, устремленность; позволяет решать вопросы передачи знаний, навыков, умений; добиваться глубинного личностного осознания участниками законов природы и общества; позволяет оказывать на них воспитательное воздействие; позволяет увлекать, убеждать, а в некоторых случаях, и лечить; многофункциональна, её влияние на человека невозможно ограничить каким-либо одним аспектом, но все её возможные воздействия актуализируются одновременно; преимущественно коллективная, групповая форма деятельности, в основе которой лежит соревновательный аспект. В качестве соперника, однако, может выступать не только человек, но и обстоятельства, и сам играющий (преодоление себя, своего результата); нивелирует значение конечного результата. В игровой деятельности участника могут устраивать разные типы «призов»: материальный, моральный (поощрение, грамота, широкое объявление результата), психологический (самоутверждение, подтверждение самооценки) и другие. Причем при групповой деятельности результат воспринимается им через призму общего успеха, отождествляя успех группы, команды как собственный; в процессе обучения отличается наличием четко поставленной ситуационной цели и соответствующего ей педагогического эмоционально-делового (т е. не формально-неравнодушного) результата.
Все дидактические игры по содержанию можно разделить на три группы: игры с цифрами и числами; игры с геометрическими фигурами; игры на развитие логического мышления. Дидактические игры широко используются в младшей и средней школе, потому как именно в подростковом возрасте формируются постоянные интересы и склонности к тому или иному предмету. И именно в этом возрасте необходимо стремиться раскрыть перед учениками все притягательные стороны математики. А для детей младшей возрастной группы игра является наиболее привычной и любимой формой работы.
Реализация игровых приемов и ситуаций на уроке происходит по следующим основным направлениям: дидактическая цель ставится перед учащимися в виде игровой задачи; учебная деятельность подчиняется правилам игры; учебный материал используется в качестве средства игры; в учебную деятельность вводится элемент соревнования; успешность выполнения дидактического задания связывается с игровым результатом.
Математическая сторона содержания дидактической игры всегда должна отчетливо выдвигаться на первый план.
Сложно выделить какие-либо общие недостатки игровой формы обучения, так как игры бывают очень разнообразны, однако отметим, что: игровые формы обучения предполагают большие затраты времени (не менее половины урока); требуют определенного опыта и мастерства учителя (если учитель сам не включился в игру, то ему трудно будет включить в нее детей); зачастую требуют длительной подготовки, изготовления наглядных пособий или раздаточного материала, разработки игровых правил, сюжета и т.д.
Разминки — это упражнения-задания, которые помогают разрядить атмосферу, снять усталость и напряжение, взбодрить учеников, перейти от одного вида деятельности к другому, актуализировать знания, закрепить навыки. В них доминирует механизм деятельного и психологически эффективного отдыха.
Разминкам свойственны: доступность; быстро возникающая азартность; динамичность; лаконичность (не требует больших временных затрат в проведении); универсальность (применимы с различными темами).
Игровые разминки могут быть средством: актуализации знаний; развития несложных навыков таких как, например, устный счет; развития сообразительности; смекалки; устной речи; нестандартности мышления.
Игры-разминки могут быть: подвижными и статичными.
Чтобы не тратить время на объяснение правил, учитель может иметь в своем арсенале несколько игр — разминок и, используя одни и те же формы, наполнять их различным содержанием. Тогда ученики будут знать правила каждой игры и учителю будет достаточно лишь сказать, какая именно форма и по какой теме будет сейчас использована и учащиеся сразу будут готовы к работе.
Кроме того, математические игры-разминки могут быть использованы в разные моменты урока. Например, игру «математическое домино» можно проводить: в начале урока, разделив класс по рядам, с целью включить учащихся в работу на уроке; как дополнительное задание для детей решающих быстрее остальных, разделив их на пары; специальное задание для именинника, у которого карточка соберется в надпись «С днем рождения!»; как дополнительные занятия после уроков; как задание для «штрафников» (учеников не сделавших домашней задании и т.п.).
Мозговой штурм (мозговая атака) — широко применяемый способ продуцирования новых идей для решения научных практических проблем. Его цель — организация коллективной мыслительной деятельности по поиску нетрадиционных путей решения проблем.
Использование метода мозгового штурма в учебном процессе позволяет решить следующие задачи: творческое усвоение школьниками учебного материала; связь теоретических знаний с практикой; активизация учебно-познавательной деятельности обучаемых; формирование способности концентрировать внимание и мыслительные усилия на решении актуальной задачи; формирование опыта коллективной мыслительной деятельности.
Проблема, формулируемая на занятии по методике мозгового штурма, должна иметь теоретическую или практическую актуальность и вызывать активный интерес школьников. Общим требованием, которое необходимо учитывать при выборе проблемы для мозгового штурма является возможность многих неоднозначных вариантов решения проблемы, которая выдвигается перед учащимися как учебная задача.
Подготовка к мозговому штурму включает следующие шаги: определение цели занятия, конкретизация учебной задачи; планирование общего хода занятия, определение времени каждого этапа занятия; подбор вопросов для разминки; разработка критериев для оценки поступивших предложений и идей, что позволит целенаправленно и содержательно провести анализ и обобщение итогов занятия; планирование последующих действий. Во время мозгового штурма предлагаемые идеи не подлежат критике: участники должны знать, что решений у задачи может быть множество. После того как этап придумывания идей пройден, проводится анализ выдвинутых предложений, а затем более детально рассматриваются наиболее удачные решения. Метод имеет ряд сложностей в организации. В частности, ученики должны быть готовы для выдвижения идей, и задание должно предполагать некоторую вариативность решения.
ЗАКЛЮЧЕНИЕ
Для организации на занятиях активно познавательной деятельности учащихся решающее значение имеет оптимальное сочетание методов активного обучения. Подбор этих методов можно осуществить по алгоритму, включающему в себя: анализ содержания учебного материала, определение целей урока. Цепь неудач может отвратить от математики и способных детей, с другой стороны, обучение должно идти близко к потолку возможностей ученика: ощущение успеха создаётся пониманием того, что удалось преодолеть значительные трудности. Поэтому к каждому уроку необходимо тщательно подбирать индивидуальные задания, карточки, учитывающие индивидуальные способности учащихся. Дифференцированное обучение способствует развитию интересов и способностей детей.
Регулярное использование на уроках математики системы специальных задач и заданий, направленных на развитие познавательных возможностей и способностей, расширяет математический кругозор учащихся, способствует математическому развитию, повышает качество математической подготовленности, позволяет учащимся более уверенно ориентироваться в закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
1. Вигдорчик, Е.А. Элементарная математика в экономике и бизнесе / Вигдорчик Е.А., Нежданова Т.М. - М., 1997.
2. Глейзер, Г.И. История математики в школе (4-6 кл.): пособие для учителей. – М.: Просвещение, 1981.
3. Липсиц, И.В. Экономика без тайн. М.: Вита-Пресс, 1994.
4. Ганенкова, И.С. Математика. Многоуровневые самостоятельные работы в форме тестов для проверки качества знаний. 5-7 классы. Издательство «Учитель». Волгоград. 2006.
5. Математика. Еженедельное учебно-методическое приложение к газете «Первое сентября». №46, 1998.
6. Большая энциклопедия Кирилла и Мефодия (CD-диск) www.KM.ru
7. http://historic.ru/books/item/
8. http://slovari.yandex.ru
9. http://school-sector.relarn.ru

Приложенные файлы

  • docx file11.doc
    Куликова Ольга Васильевна
    Размер файла: 41 kB Загрузок: 0

Добавить комментарий