Рабочая программа
по математике
для учащихся 5 класса
Программа рассчитана на 5 час/нед., 175 часов всего
Пояснительная записка
Программа составлена в соответствии с требованиями ФГОС основного общего образования на основе примерной основной образовательной программы и авторской программы по математике Виленкина Н. Я. для учащихся 5 классов.
Рабочая программа составлена основе:
Примерной основной образовательной программы основного общего образования
Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.
«Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.
Рабочая программа опирается на УМК:
КИМ. Математика. 5 класс / Сост. Л.П. Попова М. ВАКО, 2014.
Виленкин, Н. Я. Математика. 5 класс : учебник / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2013.
Жохов, В. И. Математика. 5–6 классы. Программа. Планирование учебного материала / В. И. Жохов. – М. : Мнемозина, 2011.
Жохов, В. И. Преподавание математики в 5 и 6 классах : методические рекомендации для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. – М. : Мнемозина, 2014.
Жохов, В. И. Математика. 5 класс. Контрольные работы для учащихся / В. И. Жохов, Л. Б. Крайнева. – М. : Мнемозина, 2015
Жохов, В. И. Математические диктанты. 5 класс : пособие для учителей и учащихся / В. И. Жохов, И. М. Митяева. – М. : Мнемозина, 2011.
Жохов, В. И. Математический тренажер. 5 класс : пособие для учителей и учащихся / В. И. Жохов, В. Н. Погодин. – М. : Мнемозина, 2011.
А так же основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Цели и задачи курса
Цели:
формирование представлений о математике как универсальном языке;
развитие логического мышления, пространственного воображения, алгоритмической культуры;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;
воспитание средствами математики культуры личности;
понимание значимости математики для научно-технического прогресса;
отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития.
Задачи:
сохранить теоретические и методические подходы, оправдавшие себя в практике преподавания в начальной школе;
предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;
обеспечить уровневую дифференциацию в ходе обучения;
обеспечить базу математических знаний, достаточную для изучения алгебры и геометрии, а также для продолжения образования;
сформировать устойчивый интерес учащихся к предмету;
выявить и развить математические и творческие способности;
развивать навыки вычислений с натуральными числами;
учить выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями, действия с десятичными дробями;
дать начальные представления об использование букв для записи выражений и свойств;
учить составлять по условию текстовой задачи, несложные линейные уравнения;
продолжить знакомство с геометрическими понятиями;
развивать навыки построения геометрических фигур и измерения геометрических величин.
Рабочая программа рассчитана на 175 часов, 5 часов в неделю, 35 учебных недель. Авторское планирование рассчитано на 34 недели - 170 часов, поэтому добавлено еще 5 часов, которые распределены следующим образом: 3 часа отведены на повторение и входящий контрольный тест в начале учебного года и два часа добавлено к итоговому повторению в конце года. Таким образом, на итоговое повторение отведено не 16, а 18 часов.
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
Основные технологии
С целью обеспечения эффективности и результативности учебного процесса используются различные технологии обучения.
Главной задачей использования новых технологий является расширение интеллектуальных возможностей человека. Все используемые технологии направлены на сохранение физического, психического и нравственного здоровья каждого ученика.
На уроках используются элементы следующих технологий:
Проблемное обучение Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности.
Индивидуально-развивающее обучение
Знакомство с новыми методами мыслительной деятельности при решении творческих заданий с чертежами, технологическими картами в индивидуальном порядке
Разноуровневое обучение
У учителя появляется возможность помогать слабому, уделять внимание сильному, реализуется желание сильных учащихся быстрее и глубже продвигаться в образовании. Сильные учащиеся утверждаются в своих способностях, слабые получают возможность испытывать учебный успех, повышается уровень мотивации учения.
Технология проектного обучения
Учитель организует учебно-познавательную, исследовательскую, творческую или игровую деятельность обучающихся, которые овладевают навыками самостоятельного поиска, обработки и анализа нужной информации для решения какой-либо проблемы, значимой для участников проекта.
Работа с использованием этой технологии дает возможность развивать индивидуальные творческие способности учащихся, более осознанно подходить к профессиональному и социальному самоопределению.
Технология использования в обучении игровых методов: ролевых, деловых и других видов обучающих игр Расширение кругозора, развитие познавательной деятельности, формирование определенных умений и навыков, необходимых в практической деятельности, развитие общеучебных умений и навыков.
Тестовые технологии
Оценка уровня обученности по конкретной теме, позволяющая реально оценить готовность обучающихся к итоговому контролю, установление количественных и качественных индивидуальных различий.
Обучение в сотрудничестве (командная, групповая работа) Сотрудничество трактуется как идея совместной развивающей деятельности взрослых и детей. Суть индивидуального подхода в том, чтобы идти не от учебного предмета, а от ребенка к предмету, идти от тех возможностей, которыми располагает ребенок, применять психолого-педагогические диагностики личности. Обучающиеся и учитель занимаются совместной деятельностью. Эффективность метода не только в академических успехах обучающихся, но и в их интеллектуальном и нравственном развитии. [ Cкачайте файл, чтобы посмотреть ссылку ]
Использование ПК в учебном процессе. Создание рефератов, слайдов, презентаций и др. Поиск нужной информации в Интернет. Применение полученных знаний в практической деятельности. Здоровье сберегающие технологии Использование данных технологий позволяют равномерно во время урока распределять различные виды заданий, чередовать мыслительную деятельность с физминутками, определять время подачи сложного учебного материала, выделять время на проведение самостоятельных работ, нормативно применять ТСО.
Основные типы учебных занятий:
урок изучения нового учебного материала;
урок закрепления и применения знаний;
урок обобщающего повторения и систематизации знаний;
урок контроля знаний и умений.
Основным типом урока является комбинированный.
Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные.
На уроках используются такие формы занятий как:
практические занятия;
тренинг;
консультация;
Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 45 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием .
Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:
- после изучения наиболее значимых тем программы, - в конце учебной четверти.
Основное содержание .
Курс математики 5 класса включает основные содержательные линии:
Арифметика;
Элементы алгебры
Элементы геометрии;
Вероятность и статистика;
Множества;
Математика в историческом развитии.
«Арифметика» служит фундаментом для дальнейшего изучения математики и смежных дисциплин, способствует развитию вычислительных навыков, логического мышления, умения планировать и осуществлять практическую деятельность, необходимую в повседневной жизни.
«Элементы алгебры» показывают применение букв для обозначения чисел, для нахождения неизвестных компонентов арифметических действий, свойств арифметических действий, систематизируют знания о математическом языке.
«Элементы геометрии» способствуют формированию у учащихся первичных о геометрических абстракциях реального мира, закладывают основы формирования правильной геометрической речи.
«Вероятность и статистика» способствуют формированию у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, понимать вероятностный характер многих реальных зависимостей, обогащается представление о современной картине мира.
«Множества» способствуют овладению учащимися некоторыми элементами универсального математического языка.
«Математика в историческом развитии» способствует созданию общекультурного, гуманитарного фона изучения математики.
Вероятность и статистика, «Множества», «Математика в историческом развитии» изучаются сквозным курсом, отдельно на их изучение уроки не выделяются.
Содержание учебного предмета
1. Натуральные числа и шкалы
Обозначение натуральных чисел. Отрезок, длина отрезка. Треугольник. Плоскость, прямая, луч. Шкалы и координаты. Меньше или больше.
Основная цель – систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков
2.Сложение и вычитание натуральных чисел
Сложение натуральных чисел и его свойства. Вычитание. Решение текстовых задач. Числовые и буквенные выражения. Буквенная запись свойств сложения и вычитания. Уравнение.
Основная цель – закрепить и развить навыки сложения и вычитания натуральных чисел.
3. Умножение и деление натуральных чисел
Умножение натуральных чисел и его свойства. Деление. Деление с остатком. Упрощение выражений. Порядок выполнения действий. Степень числа. Квадрат и куб числа.
Основная цель – закрепить и развить навыки арифметических действий с натуральными числами
4. Площади и объемы
Формулы. Площадь. Формула площади прямоугольника. Единицы измерения площадей. Прямоугольный параллелепипед. Объемы. Объем прямоугольного параллелепипеда.
Основная цель – расширить представление учащихся об измерении геометрических величин на примере вычисления площадей и объемов, систематизировать известные им сведения об единице измерения.
5. Обыкновенные дроби
Окружность и круг. Доли. Обыкновенные дроби. Сравнение дробей. Правильные и неправильные дроби. Сложение и вычитание дробей с одинаковыми знаменателями .Деление и дроби. Смешанные числа. Сложение и вычитание смешанных чисел.
Основная цель – познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.
6. Десятичные дроби. Сложение и вычитание десятичных дробей
Десятичная запись дробных чисел. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Приближённые значения чисел. Округление чисел.
Основная цель – выработать умение читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.
7. Умножение и деление десятичных дробей
Умножение десятичных дробей на натуральные числа. Деление десятичных дробей на натуральные числа. Умножение десятичных дробей. Деление на десятичную дробь. Среднее арифметическое.
Основная цель – выработать умение умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями
8. Инструменты для вычислений и измерений
Микрокалькулятор. Проценты. Угол. Прямой и развернутый угол. Чертёжный треугольник. Измерение углов. Транспортир. Круговые диаграммы.
Основная цель – сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.
9. Повторение
Распределение учебных часов по темам.
Натуральные числа и шкалы -15 ч.
Сложение и вычитание натуральных чисел - 21 ч
Умножение и деление натуральных чисел -27 ч
Площади и объемы - 12 ч
Обыкновенные дроби - 23 ч
Десятичные дроби. Сложение и вычитание десятичных дробей - 13 ч
Умножение и деление десятичных дробей - 26 ч
Инструменты для вычислений и измерений - 17 ч
Итоговое повторение курса математики 5 класса - 21 ч
Требования к уровню подготовки учащихся.
Натуральные числа .Дроби.
Ученик научится:
понимать особенности десятичной системы счисления;
понимать и использовать термины и символы, связанные с понятием степени числа; вычислять значения выражений, содержащих степень с натуральным показателем;
оперировать понятием обыкновенной дроби, выполнять вычисления с обыкновенными дробями;
оперировать понятием десятичной дроби, выполнять вычисления с десятичными дробями;
понимать и использовать различными способами представления дробных чисел; переходить от одной формы записи чисел к другой, выбирая подходящую для конкретного случая форму;
оперировать понятием процента;
решать текстовые задачи арифметическим способом;
применять вычислительные умения в практических ситуациях, в том числе требующих выбора нужных данных или поиска недостающих.
Ученик получит возможность :
познакомиться с позиционными системами счисления с основаниями, отличными от 10;
углубить и развить представления о натуральных числах ;
научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Измерения, приближения, оценки
Ученик научится:
округлять натуральные числа и десятичные дроби;
работать с единицами измерения величин;
интерпретировать ответ задачи в соответствии с поставленным вопросом.
Ученик получит возможность:
понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения. Уравнения.
Ученик научится:
использовать буквы для записи общих утверждений( например, свойств арифметических действий, свойств нуля при умножении ), правил, формул;
оперировать понятием «буквенное выражение»;
осуществлять элементарную деятельность, связанную с понятием «уравнение»;
Ученик получит возможность :
приобрести начальный опыт работы с формулами: вычислять по формулам, в том числе используемые в реальной практике; составлять формулы по условиям, заданным задачей;
переводить условия текстовых задач на алгебраический язык, составлять уравнения, буквенное выражение по условию задачи;
Описательная статистика.
Ученик научится:
работать с информацией, представленной в форме таблицы или круговой диаграммы.
Ученик получит возможность :
понять , что одну и ту же информацию можно представить в разной форме ( в виде таблицы или диаграммы ), и выбрать более наглядное для её интерпретации представление.
Наглядная геометрия.
Ученик научится:
распознавать на чертежах, рисунках, в окружающем мире плоские геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур;
распознавать на чертеже, рисунках, в окружающем мире пространственные геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур; распознавать развертку куба, параллелепипеда;
измерять с помощью инструментов и сравнивать длины отрезков и величин углов, строить отрезки заданной длины и углы заданной величины;
изображать геометрические фигуры конфигурации с помощью чертежных инструментов и от руки на нелинованной и клетчатой бумаге;
делать простейшие умозаключения, опираясь на знание свойств геометрических фигур, на основе классификации углов;
вычислять периметры многоугольников, площади прямоугольников, объёмы параллелепипедов.
Ученик получит возможность научиться :
исследовать и описывать свойства геометрические фигуры ( плоских и пространственных), используя наблюдения, измерения, эксперимент, моделирование, в том числе компьютерное моделирование и эксперимент;
конструировать геометрические объекты, используя бумагу, пластилин, проволоку и др.;
Личностные, метапредметные и предметные результаты
освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
умения контролировать процесс и результат учебной математической деятельности;
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умения осуществлять контроль по образцу и вносить необходимые коррективы;
способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами,"
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Учебно-методическая литература.
Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.
2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.
Математика 5. Учебник для общеобразовательных учреждений. Авторы: Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд , издательство "Просвещение", г. Москва 2012
4. Дидактические материалы Чесноков А.С., Нешков К. И., издательство "Мнемозина", г. Москва 2008
20 тестов по математике 5-6 классы. С. С. Минаева , издательство «Экзамен» 2011
Тесты по математике 5 класс ( к учебнику Виленкина) Рудницкая В.Н., издательство «Экзамен» 2014
Контрольно-измерительные материалы Математика 5 класс
сост. Попова Л.П., издательство « ВАКО» Москва 2013
Рабочая программа
по математике
для учащихся 7 класса
Пояснительная записка
Рабочая программа по алгебре в 7 классе разработана на основе: «Примерной основной образовательной программы основного общего образования», в соответствии с положениями Федерального государственного образовательного стандарта основного общего образования второго поколения, «Примерной программы» (Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64с. – (Стандарты второго поколения), программы по алгебре Н.Г. Миндюк (М.: Просвещение, 2012) к учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова и др. (М.: Просвещение, 2013), и ориентирована на учебник: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра. 7 класс: Учебник для общеобразовательных учреждений. М.: Просвещение, 2015.
Обучение математике в основной школе направлено на достижение следующих целей:
В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Содержание образование по алгебре в 7 классах определяет следующие задачи:
развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений;
предоставление школьникам конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов;
формирование представления о статистических закономерностях и о различных способах их изучения, об особенностях прогнозов, носящих вероятностный характер;
развитие логического мышления и речи - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры, использовать словесный и символический языки математики для иллюстрации, аргументации и доказательства.
Формы контроля УУД
Контроль осуществляется через использование следующих видов оценки УУД: входящий, текущий, тематический, итоговый. При этом используются различные формы оценки и контроля УУД: контрольная работа, домашняя контрольная работа, самостоятельная работа, домашняя практическая работа, домашняя самостоятельная работа, тест, контрольный тест, устный опрос, проектная работа.
Для контроля и оценки качества обучения используются следующие источники:
1. Контрольно-измерительные материалы. Алгебра: 7 класс: /Сост. Л.И.Мартышова.- М.: ВАКО, 2014..
2. Дудницын Ю.П., Кронгауз Л.В. Алгебра: Тематические тесты. 7 класс. М.: Просвещение, 2011.
3. Звавич Л.И., Кузнецова Л.В., Суворова С.Б. и др. Алгебра: Дидактические материалы. 7 класс. М.: Просвещение, 2011.
4. Голобородъко В.В., Ершова А.П. и др. Алгебра. Геометрия: Самостоятельные и контрольные работы в 7 классе. М.: Илекса, 2010.
Успешность выполнения работы определяется в соответствии с нижеприведенными шкалами:
Успешность выполнения работы определяется в соответствии с нижеприведенными шкалами:
[ Cкачайте файл, чтобы посмотреть ссылку ][ Cкачайте файл, чтобы посмотреть ссылку ]
1
2
для всех тематических тестов:
удовлетворительно – 3 балла;
хорошо – 4-5 баллов;
отлично – 6 баллов.
для тематических тестов с заданиями типа С:
удовлетворительно – 4 балла;
хорошо – 5-6 баллов;
отлично – 7-8 баллов.
для итоговых тестов:
удовлетворительно – 8-11 баллов;
хорошо – 12-14 баллов;
отлично – 15-18 баллов.
80-100% от максимальной суммы баллов – оценка «5»;
60-80% - оценка «4»;
40-60% - оценка «3»;
0-40% - оценка «2».
Учитель может скорректировать предлагаемую шкалу оценок с учетом особенностей класса.
Оценка метапредметных результатов представляет собой оценку достижения планируемых результатов освоения основной образовательной программы, представленных в разделах «Регулятивные учебные действия», «Коммуникативные учебные действия», «Познавательные учебные действия» междисциплинарной программы формирования универсальных учебных действий у обучающихся на ступени основного общего образования через комплексные метапредметные работы, проекты и исследовательскую деятельность.
Промежуточная аттестация проводится в соответствии с Уставом школы, Положением о формах, периодичности, порядке текущего контроля успеваемости и промежуточной аттестации обучающихся Староатлашской СОШ.
Общая характеристика учебного предмета
Математика наиболее точная из наук. Поэтому учебный предмет «Математика» обладает исключительным потенциалом: воспитывает интеллектуальную корректность, критичность мышления, способность различать обоснованные и необоснованные суждения, приучает к продолжительной умственной деятельности. Для многих математика является необходимым элементом предпрофессиональной подготовки. В связи с этим принципиально важно согласование математики и других учебных предметов. Хотя математика – единая наука без четких граней между разными ее разделами, ниже информационный массив курса разбит на разделы: «Арифметика», «Алгебра», «Геометрия», «Вероятность и статистика». Вместе с тем предлагается знакомство с историей математики и овладение общематематическими понятиями и методами:
Определения и начальные (неопределяемые) понятия. Доказательства; аксиомы и гипотезы, опровержения, контрпример, типичные ошибки в рассуждениях.
Математическая модель. Математика и задачи социологии, географии, лингвистики и пр.
Принципы отбора основного и дополнительного содержания образования по математике в 7-9 классе связаны с преемственностью целей образования, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся. Обязательный минимум обеспечивает преемственность в развитии вычислительных умений и навыков учащихся, полученных на уроках математики в начальной школе; в применении изученных зависимостей между компонентами при решении уравнений; анализе решения текстовых задач.
Основой реализации рабочей программы является:
использование приемов и методов, применяемых в личностно-ориентированном подходе в обучении, а также проблемного обучения;
вести обучение «от простого к сложному», используя наглядные пособия и иллюстрируя математические высказывания;
вести изучение отдельных тем учебного материала на уровне «от общего к частному», применяя частично поисковые методы и приемы;
формирование учебно-познавательных интересов пятиклассников, применяя информационно-коммуникационные технологии.
Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В 7-9 классах межпредметные связи реализуются через согласованность в формировании общих понятий (скорость, время, масштаб, закон, функциональная зависимость и др.), которые способствуют пониманию школьниками целостной картины мира.
Место учебного предмета в учебном плане
Учебный план Староатлашской СОШ предусматривает обязательное изучение алгебры в 7-9 классе в объеме 315 часов.
В 7 классе - 105 часов из расчета 3 часа в неделю.
В 8 классе - 105 часов из расчета 3 часа в неделю.
В 9 классе - 105 часов из расчета 3 часа в неделю.
Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»
Личностными результатами изучения предмета «Алгебра» являются формирование следующих умений и качеств:
независимость и кретивность мышления;
воля и настойчивость в достижении цели;
представление о математической науке как сфере человеческой деятельности;
инициатива, находчивость, активность при решении математической задачи;
умение контролировать процесс и результат учебной математической деятельности.
Метапредметным результатом изучения предмета «Алгебра» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
Познавательные УУД:
анализировать, сравнивать, классифицировать и обобщать факты и явления;
осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
создавать математические модели;
составлять тезисы, различные виды планов (простых, сложных и т.п.);
преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
вычитывать все уровни текстовой информации;
уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания;
уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
в дискуссии уметь выдвинуть аргументы и контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории
Предметным результатом изучения предмета «Алгебра» является сформированность следующих умений:
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять под¬становку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с це¬лыми показателями, с многочленами и с алгебраи¬ческими дробями; выполнять разложение много¬членов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линей¬ных уравнений с двумя переменными;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами.
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Содержание учебного предмета
Выражения. Тождества. Уравнения. Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.
Функции. Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
Степень с натуральным показателем. Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х1, у = х3 и их графики.
Многочлены. Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Формулы сокращенного умножения. Формулы (,а ± Ь)2 = а2+ 2ah + b2, (а ± й)3 = а3 ± За2Ь + ЪаЬ2 ± Ь\ (а ± b) (а2 + ah + b2) = д3 + Ьъ. Применение формул сокращенного умножения в преобразованиях выражений.
Решение системы двух линейных уравнений с двумя переменными и ее геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Элементы логики, комбинаторики, статистики. Простейшие статистические характеристики: среднее арифметическое, мода, медиана, размах. Простейшие комбинаторные задачи. Правило умножения. Дерево вариантов. Перестановки. Выбор двух элементов. Сочетания. Выбор трех и более элементов.
Содержание тем учебного курса математика
1. Выражения, тождества, уравнения (23ч )
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
2. Функции (12ч)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Основная цель - ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
3. Степень с натуральным показателем (14 часов)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.
Основная цель - выработать умение выполнять действия над степенями с натуральными показателями.
4. Многочлены (16 часов)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель - выработать умение выполнять сложе ние, вычитание, умножение многочленов и разложение многочленов на множители.
5. Формулы сокращенного умножения (17 часов)
Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
Основная цель - выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
6. Системы линейных уравнений (14 часов)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель - ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
7. Повторение (6 часов)
Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Итоговая контрольная работа.
Контрольные работы по алгебре :
Нулевой срез знаний
Контрольная работа № 1 «Преобразование выражений»
Контрольная работа № 2 «Линейное уравнение»
Контрольная работа № 3 «Линейная функция»
Контрольная работа № 4 «Степень с натуральным показателем»
Контрольная работа № 5 «Действия с одночленами и многочленами»
Контрольная работа № 6 «Действия с многочленами»
Контрольная работа № 7 «Квадрат суммы и разности двух выражений»
Контрольная работа № 8 «Преобразование выражений»
Контрольная работа № 9 «Системы линейных уравнений»
Итоговая контрольная работа № 10
[ Cкачайте файл, чтобы посмотреть ссылку ][ Cкачайте файл, чтобы посмотреть ссылку ]
Номер пара графа
Содержание материала
Количество часов
Глава I. Выражения, тождества, уравнения
23
1
2
3
4
Выражения
Преобразование выражений
Контрольная работа № 1
Уравнения с одной переменной
Статистические характеристики
Контрольная работа № 2
7
5
7
4
Глава II. Функции
12
5
6
Функции и их графики
Линейная функция
Контрольная работа № 3
5
7
Глава III. Степень с натуральным показателем
14
7
8
Степень и ее свойства
Одночлены
Контрольная работа № 4
8
6
Глава IV. Многочлены
16
9
10
11
Сумма и разность многочленов
Произведение одночлена и много члена
Контрольная работа № 5
Произведение многочленов
Контрольная работа № 6
4
5
7
Глава V. Формулы сокращенного умножения
17
12
13
14
Квадрат суммы и квадрат разности
Разность квадратов. Сумма и раз ность кубов
Контрольная работа № 7
Преобразование целых выражений
Контрольная работа № 8
4
6
7
Глава VI. Системы линейных уравнений.
14
15
16
Линейные уравнения с двумя пере менными и их системы. Решение систем линейных уравнений
Контрольная работа № 9
6
8
Повторение
6
Итоговая контрольная работа
Планируемые результаты изучения учебного предмета
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
В направлении личностного развития:
умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
В метапредметном направлении:
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществл ять деятельность, направленную на решение задач исследовательского характера;
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
3. В предметном направлении:
предметным результатом изучения курса является сформированность следующих умений.
Предметная область «Арифметика»
переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами. Использовать приобретенные знания и умения
в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций.
Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые статистические данные;
находить вероятности случайных событий в простейших случаях.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выстраивания аргументации при доказательстве и в диалоге;
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
понимания статистических утверждений.
УУД
В результате изучения на ступени основного общего образования у обучающихся будут сформированыличностные, регулятивные, познавательные и коммуникативные универсальные учебные действия как основа умения учиться.
В сфере личностных универсальных учебных действий будут сформированы внутренняя позиция обучающегося, адекватная мотивация учебной деятельности, включая учебные и познавательные мотивы, ориентация на моральные нормы и их выполнение.
В сфере регулятивных универсальных учебных действий обучающиеся овладеют всеми типами учебных действий, направленных на организацию своей работы в образовательном учреждении и вне его, включая способность принимать и сохранять учебную цель и задачу, планировать её реализацию, контролировать и оценивать свои действия, вносить соответствующие коррективы в их выполнение.
В сфере познавательных универсальных учебных действий обучающиеся научатся воспринимать и анализировать сообщения и важнейшие их компоненты тексты, использовать знаково-символические средства, в том числе овладеют действием моделирования, а также широким спектром логических действий и операций, включая общие приёмы решения задач.
В сфере коммуникативных универсальных учебных действий обучающиеся приобретут умения учитывать позицию собеседника (партнёра), организовывать и осуществлять сотрудничество и кооперацию с учителем и сверстниками, адекватно воспринимать и передавать информацию с использованием ИКТ, отображать предметное содержание и условия деятельности в сообщениях, важнейшими компонентами которых являются тексты.
1. Личностные универсальные учебные действия
У обучающегося будут сформированы:
широкая мотивационная основа учебной деятельности, включающая социальные, учебно-познавательные и внешние мотивы;
учебно-познавательный интерес к новому учебному материалу и способам решения новой задачи;
ориентация на понимание причин успеха в учебной деятельности, в том числе на самоанализ и самоконтроль результата, на анализ соответствия результатов требованиям конкретной задачи, на понимание предложений и оценок учителей, товарищей, родителей и других людей;
способность к самооценке на основе критериев успешности учебной деятельности;
установка на здоровый образ жизни;
основы экологической культуры: принятие ценности природного мира, готовность следовать в своей деятельности нормам природоохранного, нерасточительного, здоровьесберегающего поведения.
Обучающийся получит возможность для формирования:
внутренней позиции обучающегося на уровне положительного отношения к образовательному учреждению, понимания необходимости учения, выраженного в преобладании учебно-познавательных мотивов и предпочтении социального способа оценки знаний;
выраженной устойчивой учебно-познавательной мотивации учения;
устойчивого учебно-познавательного интереса к новым общим способам решения задач;
адекватного понимания причин успешности / не успешности учебной деятельности;
положительной адекватной дифференцированной самооценки на основе критерия успешности реализации социальной роли «хорошего ученика»;
компетентности в реализации основ гражданской идентичности в поступках и деятельности;
установки на здоровый образ жизни и реализации её в реальном поведении и поступках.
2. Регулятивные универсальные учебные действия
Обучающийся научится:
принимать и сохранять учебную задачу;
учитывать выделенные учителем ориентиры действия в новом учебном материале в сотрудничестве с учителем;
планировать свои действия в соответствии с поставленной задачей и условиями её реализации, в том числе во внутреннем плане;
учитывать установленные правила в планировании и контроле способа решения;
осуществлять итоговый и пошаговый контроль по результату (в случае работы в интерактивной среде пользоваться реакцией среды решения задачи);
оценивать правильность выполнения действия в соответствии с требованиями данной задачи и задачной области;
адекватно воспринимать предложения и оценку учителей, товарищей, родителей и других людей;
различать способ и результат действия;
вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок, использовать предложения и оценки для создания нового, более совершенного результата, использовать запись (фиксацию) в цифровой форме хода и результатов решения задачи, собственной звучащей речи на русском, родном и иностранном языках.
Обучающийся получит возможность научиться:
в сотрудничестве с учителем ставить новые учебные задачи;
преобразовывать практическую задачу в познавательную;
проявлять познавательную инициативу в учебном сотрудничестве;
самостоятельно учитывать выделенные учителем ориентиры действия в новом учебном материале;
осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия, актуальный контроль на уровне произвольного внимания;
самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как по ходу его реализации, так и в конце действия.
3. Познавательные универсальные учебные действия
Обучающийся научится:
осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы, энциклопедий, справочников (включая электронные, цифровые), в открытом информационном пространстве, в том числе контролируемом пространстве Интернета;
осуществлять запись (фиксацию) выборочной информации об окружающем мире и о себе самом, в том числе с помощью инструментов ИКТ;
использовать знаково-символические средства, в том числе модели (включая виртуальные) и схемы (включая концептуальные) для решения задач;
строить сообщения в устной и письменной форме;
ориентироваться на разнообразие способов решения задач;
основам смыслового восприятия познавательных текстов, выделять существенную информацию из сообщений разных видов (в первую очередь текстов);
осуществлять анализ объектов с выделением существенных и несущественных признаков;
осуществлять синтез как составление целого из частей;
проводить сравнение и классификацию по заданным критериям;
устанавливать причинно-следственные связи в изучаемом круге явлений;
строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;
устанавливать аналогии;
владеть рядом общих приёмов решения задач.
Обучающийся получит возможность научиться:
осуществлять расширенный поиск информации с использованием ресурсов библиотек и сети Интернет;
записывать, фиксировать информацию об окружающем мире с помощью инструментов ИКТ;
создавать и преобразовывать модели и схемы для решения задач;
осознанно и произвольно строить сообщения в устной и письменной форме;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
осуществлять синтез как составление целого из частей, самостоятельно достраивая и восполняя недостающие компоненты;
осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
строить логическое рассуждение, включающее установление причинно-следственных связей;
произвольно и осознанно владеть общими приёмами решения задач.
4. Коммуникативные универсальные учебные действия
Обучающийся научится:
адекватно использовать коммуникативные, прежде всего речевые, средства для решения различных коммуникативных задач, строить монологическое высказывание, владеть диалогической формой коммуникации, используя в том числе средства и инструменты ИКТ и дистанционного общения;
допускать возможность существования у людей различных точек зрения, в том числе не совпадающих с его собственной, и ориентироваться на позицию партнёра в общении и взаимодействии;
учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
формулировать собственное мнение и позицию;
договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов;
строить понятные для партнёра высказывания, учитывающие, что партнёр знает и видит, а что нет;
задавать вопросы;
контролировать действия партнёра;
использовать речь для регуляции своего действия;
адекватно использовать речевые средства для решения различных коммуникативных задач, строить монологическое высказывание, владеть диалогической формой речи.
Обучающийся получит возможность научиться:
учитывать и координировать в сотрудничестве позиции других людей, отличные от собственной;
учитывать разные мнения и интересы и обосновывать собственную позицию;
понимать относительность мнений и подходов к решению проблемы;
аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
продуктивно содействовать разрешению конфликтов на основе учёта интересов и позиций всех участников;
с учётом целей коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;
задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром;
осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;
адекватно использовать речь для планирования и регуляции своей деятельности;
адекватно использовать речевые средства для эффективного решения разнообразных коммуникативных задач.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К РАБОЧЕЙ ПРОГРАММЕ ПО ГЕОМЕТРИИ 7 КЛАСС.
Рабочая программа по геометрии для 7 класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по геометрии для 7–9 классов общеобразовательных школ к учебнику Л.С. Атанасяна и др. (М.: Просвещение, 2013). Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. В ходе преподавания геометрии в 7 классе, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
ЦЕЛИ И ЗАДАЧИ ОБУЧЕНИЯ.
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной
жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний. Таким образом, решаются следующие задачи:
введение терминологии и отработка умения ее грамотного использования;
развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;
совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
формирование умения доказывать равенство данных треугольников;
отработка навыков решения простейших задач на построение с помощью циркуля и линейки;
формирование умения доказывать параллельность прямых с использованием соответствующих признаков, находить равные углы при параллельных прямых, что находит широкое применение в дальнейшем курсе геометрии;
расширение знаний учащихся о треугольниках.
ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин.
В результате освоения курса геометрии 7 класса учащиеся получают представление об основных фигурах на плоскости и их свойствах; приобретают навыки геометрических построений, необходимые для выполнения часто встречающихся графических работ, а также навыки измерения и вычисления длин, углов, применяемые для решения разнообразных геометрических и практических задач.
В курсе геометрии 7 класса можно выделить следующие содержательно-методические линии: «Геометрические фигуры», «Измерение геометрических величин».
Линия «Геометрические фигуры» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей модели для описания окружающей реальности, а также способствует развитию логического мышления путем систематического изучения свойств геометрических фигур на плоскости и применении этих свойств при решении задач на доказательство и на построение с помощью циркуля и линейки.
Содержание раздела «Измерение геометрических величин» нацелено на приобретение практических навыков, необходимых в повседневной жизни, а также способствует формированию у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах.
МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ.
Базисный учебный (образовательный план) на изучение геометрии в 7 классе основной школе отводит 2 учебных часа в неделю в течение 35 недель обучения, всего 70 уроков (учебных занятий).
№ п/п
Наименование разделов и тем
Всего часов
Контрольные работы.
1
Начальные геометрические сведения
10
1
2
Треугольники
17
1
3
Параллельные прямые
13
1
4
Соотношение между сторонами и углами треугольника
18
2
5
Повторение. Решение задач
12
0
Итого:
70
5
ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА.
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
слушать партнера;
формулировать, аргументировать и отстаивать свое мнение;
предметные:
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных письменных, инструментальных вычислений;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.
СОДЕРЖАНИЕ КУРСА.
Начальные геометрические сведения (10 часов). Прямая и отрезок. Точка, прямая, отрезок. Луч и угол. Сравнение отрезков и углов. Равенство геометрических фигур. Измерение отрезков и углов. Длина отрезка. Градусная мера угла. Единицы измерения. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Перпендикулярные прямые.
Треугольники (17 часов). Треугольник. Высота, медиана, биссектриса треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Окружность. Дуга, хорда, радиус, диаметр. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равному данному; построение биссектрисы угла; построение перпендикулярных прямых.
Параллельные прямые (13 часов). Параллельные и пересекающиеся прямые. Теоремы о параллельности прямых. Определение. Аксиомы и теоремы. Доказательство от противного. Теорема, обратная данной.
Соотношения между сторонами и углами треугольника (18 часов). Сумма углов треугольника. Внешние углы треугольника. Виды треугольников. Теорема о соотношениях между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники; свойства и признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построения с помощью циркуля и линейки. Построение треугольника по трем элементам.
Итоговое повторение. Решение задач (12 часов).
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА.
В результате изучения курса геометрии 7 класса ученик научится:
использовать язык геометрии для описания предметов окружающего мира;
распознавать и изображать на чертежах и рисунках геометрические фигуры и их отношения;
использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла;
решать задачи на вычисление градусных мер углов от 13 QUOTE 1415 до 13 QUOTE 1415 с необходимыми теоретическими обоснованиями, опирающимися на изучение свойства фигур и их элементов;
решать задачи на доказательство, опираясь на изученные свойства фигур и отношения между ними и применяя изученные виды доказательств;
решать несложные задачи на построение циркуля и линейки;
решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Ученик получит возможность:
овладеть методами решения задач на вычисления и доказательства: методом от противного;
овладеть традиционной схемой решения задач на построения с помощью циркуля и линейки: анализ, построение, доказательство и исследование
Учебно-методическое обеспечение.
Методические и учебные пособия
Геометрия: Учеб. Для 7-9 кл. общеобразоват. учреждений/Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2013 – 2014 год.
Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций / [автор-составитель Т.А. Бурмистрова. – М.: Просвещение, 2014г.
Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2015г.
2.Интернет-ресурсы
Презентации в программе PowerPoint.
CD - Диск «Уроки геометрии Кирилла и Мефодия».
Учебно-лабораторное оборудование
Мультимедийный компьютер
Мультимедиа проектор
Интерактивная доска
Комплект инструментов классных: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль.
Рабочая программа по изучению предмета математика, 8 класс
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Настоящая программа по математике для основной общеобразовательной школы 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236) примерной программы общеобразовательных учреждений по алгебре 7–9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26), примерной программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 19-21)
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цель изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра. Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Место курса в учебном плане. Базисный учебный план отводит для изучения математики 5 часов в неделю: 3ч.-алгебра,2ч.-геометрия.
Требования к математической подготовке учащихся 8 класса
В результате изучения алгебры ученик должен
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
уметь
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
решать линейные неравенства с одной переменной и их системы;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами;
нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими
В результате изучения геометрии ученик должен
Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; знать, что такое периметр многоугольника, какой многоугольник называется выпуклым; уметь вывести формулу формулами при исследовании несложных практических ситуаций; суммы углов выпуклого многоугольника и решать задачи типа 364 – 370.
Уметь находить углы многоугольников, их периметры.
Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаки параллелограмма и равнобедренной трапеции, уметь их
доказывать и применять при решении задач
Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции уметь доказывать некоторые утверждения.
Уметь выполнять задачи на построение четырехугольников.
Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.
Уметь доказывать изученные теоремы и применять их при решении задач типа 401 – 415.
Знать определения симметричных точек и фигур относительно прямой и точки.
Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.
Знать основные свойства площадей и формулу для вычисления площади прямоугольника. Уметь вывести формулу для вычисления площади прямоугольника
Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции; уметь их доказывать, а также знать теорему об отношении площадей треугольников, имеющих по равному углу, и уметь применять все изученные формулы при решении задач
Уметь применять все изученные формулы при решении задач, в устной форме доказывать теоремы и излагать необходимый теоретический материал.
Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Уметь доказывать теоремы и применять их при решении задач
Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника.
Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач
Знать признаки подобия треугольников, определение пропорциональных отрезков. Уметь доказывать признаки подобия и применять их при решении задач
Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике.
Уметь доказывать эти теоремы и применять при решении задач, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение
Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30(, 45( и 60(, метрические соотношения. Уметь доказывать основное тригонометрическое тождество, решать задачи
Уметь применять все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач
Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной.
Уметь их доказывать и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.
Знать определение центрального и вписанного углов, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.
Уметь доказывать эти теоремы и применять при решении задач
Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.
Уметь доказывать эти теоремы и применять их при решении задач.
Уметь выполнять построение замечательных точек треугольника.
Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников.
Уметь доказывать эти теоремы и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.
Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.
Уметь доказывать эти теоремы и применять при решении задач
Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.
Уметь доказывать эти теоремы и применять их при решении задач.
Уметь выполнять построение замечательных точек треугольника.
Знать определения вектора и равных векторов.
Уметь изображать и обозначать векторы, откладывать от данной точки вектор, равный данному, решать задачи
Знать законы сложения векторов, определение разности двух векторов; знать, какой вектор называется противоположным данному; уметь объяснить, как определяется сумма двух и более векторов; уметь строить сумму двух и более данных векторов, пользуясь правилами треугольника, параллелограмма, многоугольника, строить разность двух данных векторов двумя способами.
Знать, какой вектор называется произведением вектора на число, какой отрезок называется средней линией трапеции.
Уметь формулировать свойства умножения вектора на число, формулировать и доказывать теорему о средней линии трапеции.
Содержание тем учебного курса и основные результаты обучения
Повторение (6ч.)
Рациональные дроби (22ч)+1
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = к/х и ее график.
Понятия дробного выражения, рациональной дроби. Основное свойство дроби. Правило об изменении знака перед дробью. Правила сложения, вычитания дробей с одинаковыми и с разными знаменателями. Правила умножения, деления дробей, возведения дроби в степень. Понятие тождества, тождественно равных выражений, тождественных преобразований выражения. Рациональные выражения и их преобразования. Свойства и график функции
у = 13 EMBED Equation.3 1415 при k > 0; при k < 0.
Четырехугольники (14 ч). Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция
Квадратные корни (18 ч)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция 13 EMBED Equation.3 1415 ее свойства и график.
Понятие рационального, иррационального, действительно числа, определение арифметического корня, теоремы о квадратном корне из произведения, из дроби, тождество 13 EMBED Equation.3 1415= |x|.
Площадь (14 ч). Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы
Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников.
Квадратные уравнения (24 ч)-2
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Треугольники (20 ч). Признаки подобия треугольников.
Соотношения между сторонами и углами прямоугольного треугольника (5 ч). Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.
Неравенства (19 ч)-2
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Окружность (16 ч)+1 Центр, радиус, диаметр. Дуга, хорда. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Степень с целым показателем. Элементы статистики (11 ч).+3
Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.
Повторение (9 ч)
Литература:
Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова : Просвещение, 20011.
Геометрия, 7 – 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2005.
Алгебра: элементы статистики и теории вероятностей. Учебное пособие для учащихся 7 – 9 классов общеобразовательных учреждений / / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2004.
Изучение алгебры в 7 – 9 классах. Книга для учителя. / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2008.
Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2004.
Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2008.
Рабочая программа по математике 10-11классы.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Рабочая программа по математике составлена на основе примерной программы среднего (полного) общего образования по математике, которая соответствует федеральному компоненту государственного стандарта среднего (полного) общего образования на базовом уровне.
Программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает
выделение этапов обучения, структурирование учебного материала,
определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Программа определяет инвариантную (обязательную) часть учебного курса, программа содействует сохранению единого образовательного пространства.
Общая характеристика учебного предмета
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра, «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры,
расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Цели
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры:
знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Место предмета в учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего общего образования отводится 345 часов из расчета 5 часов в неделю в 10 классе и 5 часов в 11 классе, за счёт компонента образовательного учреждения добавлен 1 час 11 классе для подготовки к ЕГЭ.При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, началам математического анализа, геометрии.
Программа рассчитана на 379 учебных часов.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт: построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие среднюю школу, и достижение которых является обязательным условием положительной аттестации ученика за курс средней школы: успешная сдача ЕГЭ по математике.
Эти требования структурированы по трем компонентам: «знать/пони-
мать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов содержания.
ОСНОВНОЕ СОДЕРЖАНИЕ ТЕМ
(379 часов)
АЛГЕБРА
(38 часов)
Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла.
Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.
Простейшие тригонометрические уравнения и неравенства.
Арксинус, арккосинус, арктангенс числа.
ФУНКЦИИ
(40 час)
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различным способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация.
Примеры функциональных зависимостей в реальных процессах и явлениях.
Обратная функция. Область определения и область значений обратной функции. График обратной функции.
Степенная функция с натуральным показателем, её свойства и график.
Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.
Тригонометрические функции, их свойства и графики; периодичность, основной период.
Показательная функция (экспонента), её свойства и график.
Логарифмическая функция, её свойства и график.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x , растяжение и сжатие вдоль осей координат.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
(43 часа)
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.
Понятие о непрерывности функции.
Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.
УРАВНЕНИЯ И НЕРАВЕНСТВА
(35 час)
Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ
И ТЕОРИИ ВЕРОЯТНОСТЕЙ
(18 часов)
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
Резерв свободного учебного времени – 30 часов:
- 10 часов на повторение в 10 классе;
- 20 часа на итоговое повторение в 11 классе.
-34 часа на подготовку к ЕГЭ в 11 классе.
ГЕОМЕТРИЯ
(136 часов)
Прямые и плоскости в пространстве. Основные понятия
стереометрии (точка, прямая, плоскость, пространство).
Пересекающиеся, параллельные и скрещивающиеся прямые.
Угол между прямыми в пространстве. Перпендикулярность прямых.
Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей,
признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.
Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде.
Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.
Сечения куба, призмы, пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере.
Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
ТРЕБОВАНИЯ К УРОВНЮПОДГОТОВКИ ВЫПУСКНИКОВ ПОЛНОЙ СРЕДНЕЙ ШКОЛЫ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
Алгебра
уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения прикладных задач, в том числе социально-экономи-ческих и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
Геометрия
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.
Требования, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарной направленности.
15
по математике
для учащихся 5 класса
Программа рассчитана на 5 час/нед., 175 часов всего
Пояснительная записка
Программа составлена в соответствии с требованиями ФГОС основного общего образования на основе примерной основной образовательной программы и авторской программы по математике Виленкина Н. Я. для учащихся 5 классов.
Рабочая программа составлена основе:
Примерной основной образовательной программы основного общего образования
Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.
«Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.
Рабочая программа опирается на УМК:
КИМ. Математика. 5 класс / Сост. Л.П. Попова М. ВАКО, 2014.
Виленкин, Н. Я. Математика. 5 класс : учебник / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2013.
Жохов, В. И. Математика. 5–6 классы. Программа. Планирование учебного материала / В. И. Жохов. – М. : Мнемозина, 2011.
Жохов, В. И. Преподавание математики в 5 и 6 классах : методические рекомендации для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. – М. : Мнемозина, 2014.
Жохов, В. И. Математика. 5 класс. Контрольные работы для учащихся / В. И. Жохов, Л. Б. Крайнева. – М. : Мнемозина, 2015
Жохов, В. И. Математические диктанты. 5 класс : пособие для учителей и учащихся / В. И. Жохов, И. М. Митяева. – М. : Мнемозина, 2011.
Жохов, В. И. Математический тренажер. 5 класс : пособие для учителей и учащихся / В. И. Жохов, В. Н. Погодин. – М. : Мнемозина, 2011.
А так же основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Цели и задачи курса
Цели:
формирование представлений о математике как универсальном языке;
развитие логического мышления, пространственного воображения, алгоритмической культуры;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;
воспитание средствами математики культуры личности;
понимание значимости математики для научно-технического прогресса;
отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития.
Задачи:
сохранить теоретические и методические подходы, оправдавшие себя в практике преподавания в начальной школе;
предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;
обеспечить уровневую дифференциацию в ходе обучения;
обеспечить базу математических знаний, достаточную для изучения алгебры и геометрии, а также для продолжения образования;
сформировать устойчивый интерес учащихся к предмету;
выявить и развить математические и творческие способности;
развивать навыки вычислений с натуральными числами;
учить выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями, действия с десятичными дробями;
дать начальные представления об использование букв для записи выражений и свойств;
учить составлять по условию текстовой задачи, несложные линейные уравнения;
продолжить знакомство с геометрическими понятиями;
развивать навыки построения геометрических фигур и измерения геометрических величин.
Рабочая программа рассчитана на 175 часов, 5 часов в неделю, 35 учебных недель. Авторское планирование рассчитано на 34 недели - 170 часов, поэтому добавлено еще 5 часов, которые распределены следующим образом: 3 часа отведены на повторение и входящий контрольный тест в начале учебного года и два часа добавлено к итоговому повторению в конце года. Таким образом, на итоговое повторение отведено не 16, а 18 часов.
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
Основные технологии
С целью обеспечения эффективности и результативности учебного процесса используются различные технологии обучения.
Главной задачей использования новых технологий является расширение интеллектуальных возможностей человека. Все используемые технологии направлены на сохранение физического, психического и нравственного здоровья каждого ученика.
На уроках используются элементы следующих технологий:
Проблемное обучение Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности.
Индивидуально-развивающее обучение
Знакомство с новыми методами мыслительной деятельности при решении творческих заданий с чертежами, технологическими картами в индивидуальном порядке
Разноуровневое обучение
У учителя появляется возможность помогать слабому, уделять внимание сильному, реализуется желание сильных учащихся быстрее и глубже продвигаться в образовании. Сильные учащиеся утверждаются в своих способностях, слабые получают возможность испытывать учебный успех, повышается уровень мотивации учения.
Технология проектного обучения
Учитель организует учебно-познавательную, исследовательскую, творческую или игровую деятельность обучающихся, которые овладевают навыками самостоятельного поиска, обработки и анализа нужной информации для решения какой-либо проблемы, значимой для участников проекта.
Работа с использованием этой технологии дает возможность развивать индивидуальные творческие способности учащихся, более осознанно подходить к профессиональному и социальному самоопределению.
Технология использования в обучении игровых методов: ролевых, деловых и других видов обучающих игр Расширение кругозора, развитие познавательной деятельности, формирование определенных умений и навыков, необходимых в практической деятельности, развитие общеучебных умений и навыков.
Тестовые технологии
Оценка уровня обученности по конкретной теме, позволяющая реально оценить готовность обучающихся к итоговому контролю, установление количественных и качественных индивидуальных различий.
Обучение в сотрудничестве (командная, групповая работа) Сотрудничество трактуется как идея совместной развивающей деятельности взрослых и детей. Суть индивидуального подхода в том, чтобы идти не от учебного предмета, а от ребенка к предмету, идти от тех возможностей, которыми располагает ребенок, применять психолого-педагогические диагностики личности. Обучающиеся и учитель занимаются совместной деятельностью. Эффективность метода не только в академических успехах обучающихся, но и в их интеллектуальном и нравственном развитии. [ Cкачайте файл, чтобы посмотреть ссылку ]
Использование ПК в учебном процессе. Создание рефератов, слайдов, презентаций и др. Поиск нужной информации в Интернет. Применение полученных знаний в практической деятельности. Здоровье сберегающие технологии Использование данных технологий позволяют равномерно во время урока распределять различные виды заданий, чередовать мыслительную деятельность с физминутками, определять время подачи сложного учебного материала, выделять время на проведение самостоятельных работ, нормативно применять ТСО.
Основные типы учебных занятий:
урок изучения нового учебного материала;
урок закрепления и применения знаний;
урок обобщающего повторения и систематизации знаний;
урок контроля знаний и умений.
Основным типом урока является комбинированный.
Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные.
На уроках используются такие формы занятий как:
практические занятия;
тренинг;
консультация;
Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 45 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием .
Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:
- после изучения наиболее значимых тем программы, - в конце учебной четверти.
Основное содержание .
Курс математики 5 класса включает основные содержательные линии:
Арифметика;
Элементы алгебры
Элементы геометрии;
Вероятность и статистика;
Множества;
Математика в историческом развитии.
«Арифметика» служит фундаментом для дальнейшего изучения математики и смежных дисциплин, способствует развитию вычислительных навыков, логического мышления, умения планировать и осуществлять практическую деятельность, необходимую в повседневной жизни.
«Элементы алгебры» показывают применение букв для обозначения чисел, для нахождения неизвестных компонентов арифметических действий, свойств арифметических действий, систематизируют знания о математическом языке.
«Элементы геометрии» способствуют формированию у учащихся первичных о геометрических абстракциях реального мира, закладывают основы формирования правильной геометрической речи.
«Вероятность и статистика» способствуют формированию у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, понимать вероятностный характер многих реальных зависимостей, обогащается представление о современной картине мира.
«Множества» способствуют овладению учащимися некоторыми элементами универсального математического языка.
«Математика в историческом развитии» способствует созданию общекультурного, гуманитарного фона изучения математики.
Вероятность и статистика, «Множества», «Математика в историческом развитии» изучаются сквозным курсом, отдельно на их изучение уроки не выделяются.
Содержание учебного предмета
1. Натуральные числа и шкалы
Обозначение натуральных чисел. Отрезок, длина отрезка. Треугольник. Плоскость, прямая, луч. Шкалы и координаты. Меньше или больше.
Основная цель – систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков
2.Сложение и вычитание натуральных чисел
Сложение натуральных чисел и его свойства. Вычитание. Решение текстовых задач. Числовые и буквенные выражения. Буквенная запись свойств сложения и вычитания. Уравнение.
Основная цель – закрепить и развить навыки сложения и вычитания натуральных чисел.
3. Умножение и деление натуральных чисел
Умножение натуральных чисел и его свойства. Деление. Деление с остатком. Упрощение выражений. Порядок выполнения действий. Степень числа. Квадрат и куб числа.
Основная цель – закрепить и развить навыки арифметических действий с натуральными числами
4. Площади и объемы
Формулы. Площадь. Формула площади прямоугольника. Единицы измерения площадей. Прямоугольный параллелепипед. Объемы. Объем прямоугольного параллелепипеда.
Основная цель – расширить представление учащихся об измерении геометрических величин на примере вычисления площадей и объемов, систематизировать известные им сведения об единице измерения.
5. Обыкновенные дроби
Окружность и круг. Доли. Обыкновенные дроби. Сравнение дробей. Правильные и неправильные дроби. Сложение и вычитание дробей с одинаковыми знаменателями .Деление и дроби. Смешанные числа. Сложение и вычитание смешанных чисел.
Основная цель – познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.
6. Десятичные дроби. Сложение и вычитание десятичных дробей
Десятичная запись дробных чисел. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Приближённые значения чисел. Округление чисел.
Основная цель – выработать умение читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.
7. Умножение и деление десятичных дробей
Умножение десятичных дробей на натуральные числа. Деление десятичных дробей на натуральные числа. Умножение десятичных дробей. Деление на десятичную дробь. Среднее арифметическое.
Основная цель – выработать умение умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями
8. Инструменты для вычислений и измерений
Микрокалькулятор. Проценты. Угол. Прямой и развернутый угол. Чертёжный треугольник. Измерение углов. Транспортир. Круговые диаграммы.
Основная цель – сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.
9. Повторение
Распределение учебных часов по темам.
Натуральные числа и шкалы -15 ч.
Сложение и вычитание натуральных чисел - 21 ч
Умножение и деление натуральных чисел -27 ч
Площади и объемы - 12 ч
Обыкновенные дроби - 23 ч
Десятичные дроби. Сложение и вычитание десятичных дробей - 13 ч
Умножение и деление десятичных дробей - 26 ч
Инструменты для вычислений и измерений - 17 ч
Итоговое повторение курса математики 5 класса - 21 ч
Требования к уровню подготовки учащихся.
Натуральные числа .Дроби.
Ученик научится:
понимать особенности десятичной системы счисления;
понимать и использовать термины и символы, связанные с понятием степени числа; вычислять значения выражений, содержащих степень с натуральным показателем;
оперировать понятием обыкновенной дроби, выполнять вычисления с обыкновенными дробями;
оперировать понятием десятичной дроби, выполнять вычисления с десятичными дробями;
понимать и использовать различными способами представления дробных чисел; переходить от одной формы записи чисел к другой, выбирая подходящую для конкретного случая форму;
оперировать понятием процента;
решать текстовые задачи арифметическим способом;
применять вычислительные умения в практических ситуациях, в том числе требующих выбора нужных данных или поиска недостающих.
Ученик получит возможность :
познакомиться с позиционными системами счисления с основаниями, отличными от 10;
углубить и развить представления о натуральных числах ;
научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Измерения, приближения, оценки
Ученик научится:
округлять натуральные числа и десятичные дроби;
работать с единицами измерения величин;
интерпретировать ответ задачи в соответствии с поставленным вопросом.
Ученик получит возможность:
понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения. Уравнения.
Ученик научится:
использовать буквы для записи общих утверждений( например, свойств арифметических действий, свойств нуля при умножении ), правил, формул;
оперировать понятием «буквенное выражение»;
осуществлять элементарную деятельность, связанную с понятием «уравнение»;
Ученик получит возможность :
приобрести начальный опыт работы с формулами: вычислять по формулам, в том числе используемые в реальной практике; составлять формулы по условиям, заданным задачей;
переводить условия текстовых задач на алгебраический язык, составлять уравнения, буквенное выражение по условию задачи;
Описательная статистика.
Ученик научится:
работать с информацией, представленной в форме таблицы или круговой диаграммы.
Ученик получит возможность :
понять , что одну и ту же информацию можно представить в разной форме ( в виде таблицы или диаграммы ), и выбрать более наглядное для её интерпретации представление.
Наглядная геометрия.
Ученик научится:
распознавать на чертежах, рисунках, в окружающем мире плоские геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур;
распознавать на чертеже, рисунках, в окружающем мире пространственные геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур; распознавать развертку куба, параллелепипеда;
измерять с помощью инструментов и сравнивать длины отрезков и величин углов, строить отрезки заданной длины и углы заданной величины;
изображать геометрические фигуры конфигурации с помощью чертежных инструментов и от руки на нелинованной и клетчатой бумаге;
делать простейшие умозаключения, опираясь на знание свойств геометрических фигур, на основе классификации углов;
вычислять периметры многоугольников, площади прямоугольников, объёмы параллелепипедов.
Ученик получит возможность научиться :
исследовать и описывать свойства геометрические фигуры ( плоских и пространственных), используя наблюдения, измерения, эксперимент, моделирование, в том числе компьютерное моделирование и эксперимент;
конструировать геометрические объекты, используя бумагу, пластилин, проволоку и др.;
Личностные, метапредметные и предметные результаты
освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
умения контролировать процесс и результат учебной математической деятельности;
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умения осуществлять контроль по образцу и вносить необходимые коррективы;
способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами,"
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Учебно-методическая литература.
Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.
2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.
Математика 5. Учебник для общеобразовательных учреждений. Авторы: Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд , издательство "Просвещение", г. Москва 2012
4. Дидактические материалы Чесноков А.С., Нешков К. И., издательство "Мнемозина", г. Москва 2008
20 тестов по математике 5-6 классы. С. С. Минаева , издательство «Экзамен» 2011
Тесты по математике 5 класс ( к учебнику Виленкина) Рудницкая В.Н., издательство «Экзамен» 2014
Контрольно-измерительные материалы Математика 5 класс
сост. Попова Л.П., издательство « ВАКО» Москва 2013
Рабочая программа
по математике
для учащихся 7 класса
Пояснительная записка
Рабочая программа по алгебре в 7 классе разработана на основе: «Примерной основной образовательной программы основного общего образования», в соответствии с положениями Федерального государственного образовательного стандарта основного общего образования второго поколения, «Примерной программы» (Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64с. – (Стандарты второго поколения), программы по алгебре Н.Г. Миндюк (М.: Просвещение, 2012) к учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова и др. (М.: Просвещение, 2013), и ориентирована на учебник: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра. 7 класс: Учебник для общеобразовательных учреждений. М.: Просвещение, 2015.
Обучение математике в основной школе направлено на достижение следующих целей:
В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Содержание образование по алгебре в 7 классах определяет следующие задачи:
развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений;
предоставление школьникам конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов;
формирование представления о статистических закономерностях и о различных способах их изучения, об особенностях прогнозов, носящих вероятностный характер;
развитие логического мышления и речи - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры, использовать словесный и символический языки математики для иллюстрации, аргументации и доказательства.
Формы контроля УУД
Контроль осуществляется через использование следующих видов оценки УУД: входящий, текущий, тематический, итоговый. При этом используются различные формы оценки и контроля УУД: контрольная работа, домашняя контрольная работа, самостоятельная работа, домашняя практическая работа, домашняя самостоятельная работа, тест, контрольный тест, устный опрос, проектная работа.
Для контроля и оценки качества обучения используются следующие источники:
1. Контрольно-измерительные материалы. Алгебра: 7 класс: /Сост. Л.И.Мартышова.- М.: ВАКО, 2014..
2. Дудницын Ю.П., Кронгауз Л.В. Алгебра: Тематические тесты. 7 класс. М.: Просвещение, 2011.
3. Звавич Л.И., Кузнецова Л.В., Суворова С.Б. и др. Алгебра: Дидактические материалы. 7 класс. М.: Просвещение, 2011.
4. Голобородъко В.В., Ершова А.П. и др. Алгебра. Геометрия: Самостоятельные и контрольные работы в 7 классе. М.: Илекса, 2010.
Успешность выполнения работы определяется в соответствии с нижеприведенными шкалами:
Успешность выполнения работы определяется в соответствии с нижеприведенными шкалами:
[ Cкачайте файл, чтобы посмотреть ссылку ][ Cкачайте файл, чтобы посмотреть ссылку ]
1
2
для всех тематических тестов:
удовлетворительно – 3 балла;
хорошо – 4-5 баллов;
отлично – 6 баллов.
для тематических тестов с заданиями типа С:
удовлетворительно – 4 балла;
хорошо – 5-6 баллов;
отлично – 7-8 баллов.
для итоговых тестов:
удовлетворительно – 8-11 баллов;
хорошо – 12-14 баллов;
отлично – 15-18 баллов.
80-100% от максимальной суммы баллов – оценка «5»;
60-80% - оценка «4»;
40-60% - оценка «3»;
0-40% - оценка «2».
Учитель может скорректировать предлагаемую шкалу оценок с учетом особенностей класса.
Оценка метапредметных результатов представляет собой оценку достижения планируемых результатов освоения основной образовательной программы, представленных в разделах «Регулятивные учебные действия», «Коммуникативные учебные действия», «Познавательные учебные действия» междисциплинарной программы формирования универсальных учебных действий у обучающихся на ступени основного общего образования через комплексные метапредметные работы, проекты и исследовательскую деятельность.
Промежуточная аттестация проводится в соответствии с Уставом школы, Положением о формах, периодичности, порядке текущего контроля успеваемости и промежуточной аттестации обучающихся Староатлашской СОШ.
Общая характеристика учебного предмета
Математика наиболее точная из наук. Поэтому учебный предмет «Математика» обладает исключительным потенциалом: воспитывает интеллектуальную корректность, критичность мышления, способность различать обоснованные и необоснованные суждения, приучает к продолжительной умственной деятельности. Для многих математика является необходимым элементом предпрофессиональной подготовки. В связи с этим принципиально важно согласование математики и других учебных предметов. Хотя математика – единая наука без четких граней между разными ее разделами, ниже информационный массив курса разбит на разделы: «Арифметика», «Алгебра», «Геометрия», «Вероятность и статистика». Вместе с тем предлагается знакомство с историей математики и овладение общематематическими понятиями и методами:
Определения и начальные (неопределяемые) понятия. Доказательства; аксиомы и гипотезы, опровержения, контрпример, типичные ошибки в рассуждениях.
Математическая модель. Математика и задачи социологии, географии, лингвистики и пр.
Принципы отбора основного и дополнительного содержания образования по математике в 7-9 классе связаны с преемственностью целей образования, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся. Обязательный минимум обеспечивает преемственность в развитии вычислительных умений и навыков учащихся, полученных на уроках математики в начальной школе; в применении изученных зависимостей между компонентами при решении уравнений; анализе решения текстовых задач.
Основой реализации рабочей программы является:
использование приемов и методов, применяемых в личностно-ориентированном подходе в обучении, а также проблемного обучения;
вести обучение «от простого к сложному», используя наглядные пособия и иллюстрируя математические высказывания;
вести изучение отдельных тем учебного материала на уровне «от общего к частному», применяя частично поисковые методы и приемы;
формирование учебно-познавательных интересов пятиклассников, применяя информационно-коммуникационные технологии.
Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В 7-9 классах межпредметные связи реализуются через согласованность в формировании общих понятий (скорость, время, масштаб, закон, функциональная зависимость и др.), которые способствуют пониманию школьниками целостной картины мира.
Место учебного предмета в учебном плане
Учебный план Староатлашской СОШ предусматривает обязательное изучение алгебры в 7-9 классе в объеме 315 часов.
В 7 классе - 105 часов из расчета 3 часа в неделю.
В 8 классе - 105 часов из расчета 3 часа в неделю.
В 9 классе - 105 часов из расчета 3 часа в неделю.
Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»
Личностными результатами изучения предмета «Алгебра» являются формирование следующих умений и качеств:
независимость и кретивность мышления;
воля и настойчивость в достижении цели;
представление о математической науке как сфере человеческой деятельности;
инициатива, находчивость, активность при решении математической задачи;
умение контролировать процесс и результат учебной математической деятельности.
Метапредметным результатом изучения предмета «Алгебра» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
Познавательные УУД:
анализировать, сравнивать, классифицировать и обобщать факты и явления;
осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
создавать математические модели;
составлять тезисы, различные виды планов (простых, сложных и т.п.);
преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
вычитывать все уровни текстовой информации;
уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания;
уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
в дискуссии уметь выдвинуть аргументы и контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории
Предметным результатом изучения предмета «Алгебра» является сформированность следующих умений:
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять под¬становку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с це¬лыми показателями, с многочленами и с алгебраи¬ческими дробями; выполнять разложение много¬членов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линей¬ных уравнений с двумя переменными;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами.
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Содержание учебного предмета
Выражения. Тождества. Уравнения. Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.
Функции. Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
Степень с натуральным показателем. Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х1, у = х3 и их графики.
Многочлены. Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Формулы сокращенного умножения. Формулы (,а ± Ь)2 = а2+ 2ah + b2, (а ± й)3 = а3 ± За2Ь + ЪаЬ2 ± Ь\ (а ± b) (а2 + ah + b2) = д3 + Ьъ. Применение формул сокращенного умножения в преобразованиях выражений.
Решение системы двух линейных уравнений с двумя переменными и ее геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Элементы логики, комбинаторики, статистики. Простейшие статистические характеристики: среднее арифметическое, мода, медиана, размах. Простейшие комбинаторные задачи. Правило умножения. Дерево вариантов. Перестановки. Выбор двух элементов. Сочетания. Выбор трех и более элементов.
Содержание тем учебного курса математика
1. Выражения, тождества, уравнения (23ч )
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
2. Функции (12ч)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Основная цель - ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
3. Степень с натуральным показателем (14 часов)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.
Основная цель - выработать умение выполнять действия над степенями с натуральными показателями.
4. Многочлены (16 часов)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель - выработать умение выполнять сложе ние, вычитание, умножение многочленов и разложение многочленов на множители.
5. Формулы сокращенного умножения (17 часов)
Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
Основная цель - выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
6. Системы линейных уравнений (14 часов)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель - ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
7. Повторение (6 часов)
Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Итоговая контрольная работа.
Контрольные работы по алгебре :
Нулевой срез знаний
Контрольная работа № 1 «Преобразование выражений»
Контрольная работа № 2 «Линейное уравнение»
Контрольная работа № 3 «Линейная функция»
Контрольная работа № 4 «Степень с натуральным показателем»
Контрольная работа № 5 «Действия с одночленами и многочленами»
Контрольная работа № 6 «Действия с многочленами»
Контрольная работа № 7 «Квадрат суммы и разности двух выражений»
Контрольная работа № 8 «Преобразование выражений»
Контрольная работа № 9 «Системы линейных уравнений»
Итоговая контрольная работа № 10
[ Cкачайте файл, чтобы посмотреть ссылку ][ Cкачайте файл, чтобы посмотреть ссылку ]
Номер пара графа
Содержание материала
Количество часов
Глава I. Выражения, тождества, уравнения
23
1
2
3
4
Выражения
Преобразование выражений
Контрольная работа № 1
Уравнения с одной переменной
Статистические характеристики
Контрольная работа № 2
7
5
7
4
Глава II. Функции
12
5
6
Функции и их графики
Линейная функция
Контрольная работа № 3
5
7
Глава III. Степень с натуральным показателем
14
7
8
Степень и ее свойства
Одночлены
Контрольная работа № 4
8
6
Глава IV. Многочлены
16
9
10
11
Сумма и разность многочленов
Произведение одночлена и много члена
Контрольная работа № 5
Произведение многочленов
Контрольная работа № 6
4
5
7
Глава V. Формулы сокращенного умножения
17
12
13
14
Квадрат суммы и квадрат разности
Разность квадратов. Сумма и раз ность кубов
Контрольная работа № 7
Преобразование целых выражений
Контрольная работа № 8
4
6
7
Глава VI. Системы линейных уравнений.
14
15
16
Линейные уравнения с двумя пере менными и их системы. Решение систем линейных уравнений
Контрольная работа № 9
6
8
Повторение
6
Итоговая контрольная работа
Планируемые результаты изучения учебного предмета
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
В направлении личностного развития:
умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
В метапредметном направлении:
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществл ять деятельность, направленную на решение задач исследовательского характера;
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
3. В предметном направлении:
предметным результатом изучения курса является сформированность следующих умений.
Предметная область «Арифметика»
переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами. Использовать приобретенные знания и умения
в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций.
Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые статистические данные;
находить вероятности случайных событий в простейших случаях.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выстраивания аргументации при доказательстве и в диалоге;
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
понимания статистических утверждений.
УУД
В результате изучения на ступени основного общего образования у обучающихся будут сформированыличностные, регулятивные, познавательные и коммуникативные универсальные учебные действия как основа умения учиться.
В сфере личностных универсальных учебных действий будут сформированы внутренняя позиция обучающегося, адекватная мотивация учебной деятельности, включая учебные и познавательные мотивы, ориентация на моральные нормы и их выполнение.
В сфере регулятивных универсальных учебных действий обучающиеся овладеют всеми типами учебных действий, направленных на организацию своей работы в образовательном учреждении и вне его, включая способность принимать и сохранять учебную цель и задачу, планировать её реализацию, контролировать и оценивать свои действия, вносить соответствующие коррективы в их выполнение.
В сфере познавательных универсальных учебных действий обучающиеся научатся воспринимать и анализировать сообщения и важнейшие их компоненты тексты, использовать знаково-символические средства, в том числе овладеют действием моделирования, а также широким спектром логических действий и операций, включая общие приёмы решения задач.
В сфере коммуникативных универсальных учебных действий обучающиеся приобретут умения учитывать позицию собеседника (партнёра), организовывать и осуществлять сотрудничество и кооперацию с учителем и сверстниками, адекватно воспринимать и передавать информацию с использованием ИКТ, отображать предметное содержание и условия деятельности в сообщениях, важнейшими компонентами которых являются тексты.
1. Личностные универсальные учебные действия
У обучающегося будут сформированы:
широкая мотивационная основа учебной деятельности, включающая социальные, учебно-познавательные и внешние мотивы;
учебно-познавательный интерес к новому учебному материалу и способам решения новой задачи;
ориентация на понимание причин успеха в учебной деятельности, в том числе на самоанализ и самоконтроль результата, на анализ соответствия результатов требованиям конкретной задачи, на понимание предложений и оценок учителей, товарищей, родителей и других людей;
способность к самооценке на основе критериев успешности учебной деятельности;
установка на здоровый образ жизни;
основы экологической культуры: принятие ценности природного мира, готовность следовать в своей деятельности нормам природоохранного, нерасточительного, здоровьесберегающего поведения.
Обучающийся получит возможность для формирования:
внутренней позиции обучающегося на уровне положительного отношения к образовательному учреждению, понимания необходимости учения, выраженного в преобладании учебно-познавательных мотивов и предпочтении социального способа оценки знаний;
выраженной устойчивой учебно-познавательной мотивации учения;
устойчивого учебно-познавательного интереса к новым общим способам решения задач;
адекватного понимания причин успешности / не успешности учебной деятельности;
положительной адекватной дифференцированной самооценки на основе критерия успешности реализации социальной роли «хорошего ученика»;
компетентности в реализации основ гражданской идентичности в поступках и деятельности;
установки на здоровый образ жизни и реализации её в реальном поведении и поступках.
2. Регулятивные универсальные учебные действия
Обучающийся научится:
принимать и сохранять учебную задачу;
учитывать выделенные учителем ориентиры действия в новом учебном материале в сотрудничестве с учителем;
планировать свои действия в соответствии с поставленной задачей и условиями её реализации, в том числе во внутреннем плане;
учитывать установленные правила в планировании и контроле способа решения;
осуществлять итоговый и пошаговый контроль по результату (в случае работы в интерактивной среде пользоваться реакцией среды решения задачи);
оценивать правильность выполнения действия в соответствии с требованиями данной задачи и задачной области;
адекватно воспринимать предложения и оценку учителей, товарищей, родителей и других людей;
различать способ и результат действия;
вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок, использовать предложения и оценки для создания нового, более совершенного результата, использовать запись (фиксацию) в цифровой форме хода и результатов решения задачи, собственной звучащей речи на русском, родном и иностранном языках.
Обучающийся получит возможность научиться:
в сотрудничестве с учителем ставить новые учебные задачи;
преобразовывать практическую задачу в познавательную;
проявлять познавательную инициативу в учебном сотрудничестве;
самостоятельно учитывать выделенные учителем ориентиры действия в новом учебном материале;
осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия, актуальный контроль на уровне произвольного внимания;
самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как по ходу его реализации, так и в конце действия.
3. Познавательные универсальные учебные действия
Обучающийся научится:
осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы, энциклопедий, справочников (включая электронные, цифровые), в открытом информационном пространстве, в том числе контролируемом пространстве Интернета;
осуществлять запись (фиксацию) выборочной информации об окружающем мире и о себе самом, в том числе с помощью инструментов ИКТ;
использовать знаково-символические средства, в том числе модели (включая виртуальные) и схемы (включая концептуальные) для решения задач;
строить сообщения в устной и письменной форме;
ориентироваться на разнообразие способов решения задач;
основам смыслового восприятия познавательных текстов, выделять существенную информацию из сообщений разных видов (в первую очередь текстов);
осуществлять анализ объектов с выделением существенных и несущественных признаков;
осуществлять синтез как составление целого из частей;
проводить сравнение и классификацию по заданным критериям;
устанавливать причинно-следственные связи в изучаемом круге явлений;
строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;
устанавливать аналогии;
владеть рядом общих приёмов решения задач.
Обучающийся получит возможность научиться:
осуществлять расширенный поиск информации с использованием ресурсов библиотек и сети Интернет;
записывать, фиксировать информацию об окружающем мире с помощью инструментов ИКТ;
создавать и преобразовывать модели и схемы для решения задач;
осознанно и произвольно строить сообщения в устной и письменной форме;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
осуществлять синтез как составление целого из частей, самостоятельно достраивая и восполняя недостающие компоненты;
осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
строить логическое рассуждение, включающее установление причинно-следственных связей;
произвольно и осознанно владеть общими приёмами решения задач.
4. Коммуникативные универсальные учебные действия
Обучающийся научится:
адекватно использовать коммуникативные, прежде всего речевые, средства для решения различных коммуникативных задач, строить монологическое высказывание, владеть диалогической формой коммуникации, используя в том числе средства и инструменты ИКТ и дистанционного общения;
допускать возможность существования у людей различных точек зрения, в том числе не совпадающих с его собственной, и ориентироваться на позицию партнёра в общении и взаимодействии;
учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
формулировать собственное мнение и позицию;
договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов;
строить понятные для партнёра высказывания, учитывающие, что партнёр знает и видит, а что нет;
задавать вопросы;
контролировать действия партнёра;
использовать речь для регуляции своего действия;
адекватно использовать речевые средства для решения различных коммуникативных задач, строить монологическое высказывание, владеть диалогической формой речи.
Обучающийся получит возможность научиться:
учитывать и координировать в сотрудничестве позиции других людей, отличные от собственной;
учитывать разные мнения и интересы и обосновывать собственную позицию;
понимать относительность мнений и подходов к решению проблемы;
аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
продуктивно содействовать разрешению конфликтов на основе учёта интересов и позиций всех участников;
с учётом целей коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;
задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром;
осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;
адекватно использовать речь для планирования и регуляции своей деятельности;
адекватно использовать речевые средства для эффективного решения разнообразных коммуникативных задач.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К РАБОЧЕЙ ПРОГРАММЕ ПО ГЕОМЕТРИИ 7 КЛАСС.
Рабочая программа по геометрии для 7 класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по геометрии для 7–9 классов общеобразовательных школ к учебнику Л.С. Атанасяна и др. (М.: Просвещение, 2013). Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. В ходе преподавания геометрии в 7 классе, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
ЦЕЛИ И ЗАДАЧИ ОБУЧЕНИЯ.
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной
жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний. Таким образом, решаются следующие задачи:
введение терминологии и отработка умения ее грамотного использования;
развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;
совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
формирование умения доказывать равенство данных треугольников;
отработка навыков решения простейших задач на построение с помощью циркуля и линейки;
формирование умения доказывать параллельность прямых с использованием соответствующих признаков, находить равные углы при параллельных прямых, что находит широкое применение в дальнейшем курсе геометрии;
расширение знаний учащихся о треугольниках.
ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин.
В результате освоения курса геометрии 7 класса учащиеся получают представление об основных фигурах на плоскости и их свойствах; приобретают навыки геометрических построений, необходимые для выполнения часто встречающихся графических работ, а также навыки измерения и вычисления длин, углов, применяемые для решения разнообразных геометрических и практических задач.
В курсе геометрии 7 класса можно выделить следующие содержательно-методические линии: «Геометрические фигуры», «Измерение геометрических величин».
Линия «Геометрические фигуры» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей модели для описания окружающей реальности, а также способствует развитию логического мышления путем систематического изучения свойств геометрических фигур на плоскости и применении этих свойств при решении задач на доказательство и на построение с помощью циркуля и линейки.
Содержание раздела «Измерение геометрических величин» нацелено на приобретение практических навыков, необходимых в повседневной жизни, а также способствует формированию у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах.
МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ.
Базисный учебный (образовательный план) на изучение геометрии в 7 классе основной школе отводит 2 учебных часа в неделю в течение 35 недель обучения, всего 70 уроков (учебных занятий).
№ п/п
Наименование разделов и тем
Всего часов
Контрольные работы.
1
Начальные геометрические сведения
10
1
2
Треугольники
17
1
3
Параллельные прямые
13
1
4
Соотношение между сторонами и углами треугольника
18
2
5
Повторение. Решение задач
12
0
Итого:
70
5
ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА.
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
слушать партнера;
формулировать, аргументировать и отстаивать свое мнение;
предметные:
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных письменных, инструментальных вычислений;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.
СОДЕРЖАНИЕ КУРСА.
Начальные геометрические сведения (10 часов). Прямая и отрезок. Точка, прямая, отрезок. Луч и угол. Сравнение отрезков и углов. Равенство геометрических фигур. Измерение отрезков и углов. Длина отрезка. Градусная мера угла. Единицы измерения. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Перпендикулярные прямые.
Треугольники (17 часов). Треугольник. Высота, медиана, биссектриса треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Окружность. Дуга, хорда, радиус, диаметр. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равному данному; построение биссектрисы угла; построение перпендикулярных прямых.
Параллельные прямые (13 часов). Параллельные и пересекающиеся прямые. Теоремы о параллельности прямых. Определение. Аксиомы и теоремы. Доказательство от противного. Теорема, обратная данной.
Соотношения между сторонами и углами треугольника (18 часов). Сумма углов треугольника. Внешние углы треугольника. Виды треугольников. Теорема о соотношениях между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники; свойства и признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построения с помощью циркуля и линейки. Построение треугольника по трем элементам.
Итоговое повторение. Решение задач (12 часов).
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА.
В результате изучения курса геометрии 7 класса ученик научится:
использовать язык геометрии для описания предметов окружающего мира;
распознавать и изображать на чертежах и рисунках геометрические фигуры и их отношения;
использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла;
решать задачи на вычисление градусных мер углов от 13 QUOTE 1415 до 13 QUOTE 1415 с необходимыми теоретическими обоснованиями, опирающимися на изучение свойства фигур и их элементов;
решать задачи на доказательство, опираясь на изученные свойства фигур и отношения между ними и применяя изученные виды доказательств;
решать несложные задачи на построение циркуля и линейки;
решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Ученик получит возможность:
овладеть методами решения задач на вычисления и доказательства: методом от противного;
овладеть традиционной схемой решения задач на построения с помощью циркуля и линейки: анализ, построение, доказательство и исследование
Учебно-методическое обеспечение.
Методические и учебные пособия
Геометрия: Учеб. Для 7-9 кл. общеобразоват. учреждений/Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2013 – 2014 год.
Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций / [автор-составитель Т.А. Бурмистрова. – М.: Просвещение, 2014г.
Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2015г.
2.Интернет-ресурсы
Презентации в программе PowerPoint.
CD - Диск «Уроки геометрии Кирилла и Мефодия».
Учебно-лабораторное оборудование
Мультимедийный компьютер
Мультимедиа проектор
Интерактивная доска
Комплект инструментов классных: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль.
Рабочая программа по изучению предмета математика, 8 класс
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Настоящая программа по математике для основной общеобразовательной школы 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236) примерной программы общеобразовательных учреждений по алгебре 7–9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26), примерной программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 19-21)
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цель изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра. Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Место курса в учебном плане. Базисный учебный план отводит для изучения математики 5 часов в неделю: 3ч.-алгебра,2ч.-геометрия.
Требования к математической подготовке учащихся 8 класса
В результате изучения алгебры ученик должен
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
уметь
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
решать линейные неравенства с одной переменной и их системы;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами;
нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими
В результате изучения геометрии ученик должен
Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; знать, что такое периметр многоугольника, какой многоугольник называется выпуклым; уметь вывести формулу формулами при исследовании несложных практических ситуаций; суммы углов выпуклого многоугольника и решать задачи типа 364 – 370.
Уметь находить углы многоугольников, их периметры.
Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаки параллелограмма и равнобедренной трапеции, уметь их
доказывать и применять при решении задач
Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции уметь доказывать некоторые утверждения.
Уметь выполнять задачи на построение четырехугольников.
Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.
Уметь доказывать изученные теоремы и применять их при решении задач типа 401 – 415.
Знать определения симметричных точек и фигур относительно прямой и точки.
Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.
Знать основные свойства площадей и формулу для вычисления площади прямоугольника. Уметь вывести формулу для вычисления площади прямоугольника
Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции; уметь их доказывать, а также знать теорему об отношении площадей треугольников, имеющих по равному углу, и уметь применять все изученные формулы при решении задач
Уметь применять все изученные формулы при решении задач, в устной форме доказывать теоремы и излагать необходимый теоретический материал.
Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Уметь доказывать теоремы и применять их при решении задач
Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника.
Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач
Знать признаки подобия треугольников, определение пропорциональных отрезков. Уметь доказывать признаки подобия и применять их при решении задач
Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике.
Уметь доказывать эти теоремы и применять при решении задач, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение
Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30(, 45( и 60(, метрические соотношения. Уметь доказывать основное тригонометрическое тождество, решать задачи
Уметь применять все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач
Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной.
Уметь их доказывать и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.
Знать определение центрального и вписанного углов, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.
Уметь доказывать эти теоремы и применять при решении задач
Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.
Уметь доказывать эти теоремы и применять их при решении задач.
Уметь выполнять построение замечательных точек треугольника.
Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников.
Уметь доказывать эти теоремы и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.
Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.
Уметь доказывать эти теоремы и применять при решении задач
Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.
Уметь доказывать эти теоремы и применять их при решении задач.
Уметь выполнять построение замечательных точек треугольника.
Знать определения вектора и равных векторов.
Уметь изображать и обозначать векторы, откладывать от данной точки вектор, равный данному, решать задачи
Знать законы сложения векторов, определение разности двух векторов; знать, какой вектор называется противоположным данному; уметь объяснить, как определяется сумма двух и более векторов; уметь строить сумму двух и более данных векторов, пользуясь правилами треугольника, параллелограмма, многоугольника, строить разность двух данных векторов двумя способами.
Знать, какой вектор называется произведением вектора на число, какой отрезок называется средней линией трапеции.
Уметь формулировать свойства умножения вектора на число, формулировать и доказывать теорему о средней линии трапеции.
Содержание тем учебного курса и основные результаты обучения
Повторение (6ч.)
Рациональные дроби (22ч)+1
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = к/х и ее график.
Понятия дробного выражения, рациональной дроби. Основное свойство дроби. Правило об изменении знака перед дробью. Правила сложения, вычитания дробей с одинаковыми и с разными знаменателями. Правила умножения, деления дробей, возведения дроби в степень. Понятие тождества, тождественно равных выражений, тождественных преобразований выражения. Рациональные выражения и их преобразования. Свойства и график функции
у = 13 EMBED Equation.3 1415 при k > 0; при k < 0.
Четырехугольники (14 ч). Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция
Квадратные корни (18 ч)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция 13 EMBED Equation.3 1415 ее свойства и график.
Понятие рационального, иррационального, действительно числа, определение арифметического корня, теоремы о квадратном корне из произведения, из дроби, тождество 13 EMBED Equation.3 1415= |x|.
Площадь (14 ч). Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы
Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников.
Квадратные уравнения (24 ч)-2
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Треугольники (20 ч). Признаки подобия треугольников.
Соотношения между сторонами и углами прямоугольного треугольника (5 ч). Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.
Неравенства (19 ч)-2
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Окружность (16 ч)+1 Центр, радиус, диаметр. Дуга, хорда. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Степень с целым показателем. Элементы статистики (11 ч).+3
Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.
Повторение (9 ч)
Литература:
Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова : Просвещение, 20011.
Геометрия, 7 – 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2005.
Алгебра: элементы статистики и теории вероятностей. Учебное пособие для учащихся 7 – 9 классов общеобразовательных учреждений / / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2004.
Изучение алгебры в 7 – 9 классах. Книга для учителя. / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2008.
Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2004.
Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2008.
Рабочая программа по математике 10-11классы.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Рабочая программа по математике составлена на основе примерной программы среднего (полного) общего образования по математике, которая соответствует федеральному компоненту государственного стандарта среднего (полного) общего образования на базовом уровне.
Программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает
выделение этапов обучения, структурирование учебного материала,
определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Программа определяет инвариантную (обязательную) часть учебного курса, программа содействует сохранению единого образовательного пространства.
Общая характеристика учебного предмета
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра, «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры,
расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Цели
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры:
знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Место предмета в учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего общего образования отводится 345 часов из расчета 5 часов в неделю в 10 классе и 5 часов в 11 классе, за счёт компонента образовательного учреждения добавлен 1 час 11 классе для подготовки к ЕГЭ.При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, началам математического анализа, геометрии.
Программа рассчитана на 379 учебных часов.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт: построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие среднюю школу, и достижение которых является обязательным условием положительной аттестации ученика за курс средней школы: успешная сдача ЕГЭ по математике.
Эти требования структурированы по трем компонентам: «знать/пони-
мать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов содержания.
ОСНОВНОЕ СОДЕРЖАНИЕ ТЕМ
(379 часов)
АЛГЕБРА
(38 часов)
Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла.
Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.
Простейшие тригонометрические уравнения и неравенства.
Арксинус, арккосинус, арктангенс числа.
ФУНКЦИИ
(40 час)
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различным способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация.
Примеры функциональных зависимостей в реальных процессах и явлениях.
Обратная функция. Область определения и область значений обратной функции. График обратной функции.
Степенная функция с натуральным показателем, её свойства и график.
Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.
Тригонометрические функции, их свойства и графики; периодичность, основной период.
Показательная функция (экспонента), её свойства и график.
Логарифмическая функция, её свойства и график.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x , растяжение и сжатие вдоль осей координат.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
(43 часа)
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.
Понятие о непрерывности функции.
Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.
УРАВНЕНИЯ И НЕРАВЕНСТВА
(35 час)
Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ
И ТЕОРИИ ВЕРОЯТНОСТЕЙ
(18 часов)
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
Резерв свободного учебного времени – 30 часов:
- 10 часов на повторение в 10 классе;
- 20 часа на итоговое повторение в 11 классе.
-34 часа на подготовку к ЕГЭ в 11 классе.
ГЕОМЕТРИЯ
(136 часов)
Прямые и плоскости в пространстве. Основные понятия
стереометрии (точка, прямая, плоскость, пространство).
Пересекающиеся, параллельные и скрещивающиеся прямые.
Угол между прямыми в пространстве. Перпендикулярность прямых.
Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей,
признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.
Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде.
Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.
Сечения куба, призмы, пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере.
Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
ТРЕБОВАНИЯ К УРОВНЮПОДГОТОВКИ ВЫПУСКНИКОВ ПОЛНОЙ СРЕДНЕЙ ШКОЛЫ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
Алгебра
уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения прикладных задач, в том числе социально-экономи-ческих и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
Геометрия
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.
Требования, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарной направленности.
15