БИНОМ НЬЮТОНА


ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ
ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»
Заслуженный Учитель Математики
«Бином Ньютона. Свойства биноминальных коэффициентов»
Цели:
- обучающие: познакомить с формулой бинома Ньютона, научить применять формулу бинома Ньютона при возведении в степень двучлена;- развивающие: способствовать развитию памяти, алгоритмического и логического мышления, внимания;- воспитательные: продолжить воспитание чувства ответственности, самостоятельности, добросовестности.)
Оборудование: компьютер, мультимедийный проектор, экран, презентация, карточки с теоретическим материалом.
Тип урока – комбинированный;
Формы работы учащихся – фронтальная, индивидуальная.
Ход урока:
1.Организационный момент:
Сообщение темы, целей урока, практической значимости рассматриваемой темы.
2. Актуализация знаний
I. Фронтальный опрос:
1)Что изучает комбинаторика?
2)Какие виды соединений или выборок вам известны?
3) Отгадать кроссворд «Комбинаторика»
II. Устный счет:
5!=….(120), А52 =…(20)., С42=….(8)
Сколькими способами можно разместить 5 человек на скамейке?
3. Изложение нового материала: Работа с карточками теоретического материала. Заслушивание и анализ сообщений студентов. Написание конспекта.
I) История комбинаторики
На прошлом уроке мы познакомились с основами комбинаторики. Домашнее задание для первой творческой группы было подготовить сообщение об истории возникновения комбинаторики как науки.
Какие же ученые внесли вклад в развитие комбинаторики как науки?
Одним из выдающихся умов того времени был английский ученый Исаак Ньютон. Ваше домашнее задание было подготовить сообщение об этом великом гении.
II) Исаак Ньютон- великий математик
Вы услышали из доклада, сколько гениальных идей и открытий принадлежит великому математику Исааку Ньютону. Одним из его открытий является формула Бином Ньютона.
III) Бином Ньютона.Именно этому открытию мы посвятим наш сегодняшний урок. Запишем тему урока. Цели нашего урока: познакомиться с формулой бинома Ньютона, научиться применять формулу бинома Ньютона при возведении в степень двучлена.
Слово бином означает «Два числа» В математике биномом называют «формулу для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных». Давайте вслед за Ньютоном попробуем ее вывести, чтобы затем применять.
Вы наверняка помните (или, по крайней мере, должны помнить), формулы сокращенного умножения для квадрата и куба суммы двух слагаемых (такая сумма называется «бином», по-русски – двучлен.
Если вы забыли эти формулы, можно их получить напрямую, раскрыв скобки в очевидных равенствах


Может быть, вам приходил в голову вопрос: можно ли (без компьютера) получить формулы типа для биномов четвертой степени, пятой, десятой – какой угодно?
Давайте попробуем дойти напрямую хотя бы до пятой степени, а там, может быть, окажется «рояль в кустах» (для порядка будем размещать слагаемые в правой части по убыванию степени а, она убывает от максимума до нуля):


Теперь отдельно выпишем численные коэффициенты в правых частях формул при возведении бинома в заданную степень:

Возможно, вы уже догадались, что «рояль в кустах» – это треугольник Паскаля на предыдущей странице. Легко проверить, что выписанные на численные коэффициенты – это строчки треугольника Паскаля, начиная с третьей. Этот «усеченный треугольник», в котором не хватает первых двух строк, легко сделать полным (получить строчки при n=0 и n=1):

Окончательно получим:

Это утверждение было известно задолго до Паскаля - его знал живший в XI-XII вв. среднеазиатский математик и поэт Омар Хайям (к сожалению, его сочинение об этом до нас не дошло). Первое, дошедшее до нас описание формулы бинома Ньютона содержится в появившейся в 1265 г. книге среднеазиатского математика ат-Туси, где дана таблица чисел  (биномиальных коэффициентов) до  включительно.
Европейские ученые познакомились с формулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойствбиномиальных коэффициентов провел французский математик и философ Б. Паскаль в 1654 г. Ваше домашнее задание было подготовить сообщение о французском ученом Паскале.
IV) Блез Паскаль Теперь понятно, как возвести бином в любую степень n. В левой части записываем (а+b)n. А в правой части записываем сумму аn + аn-1b + … + bn , оставляя в каждом слагаемом место для коэффициента. И эти места заполняем числами из n–ой строчки треугольника Паскаля, которую, конечно, нужно заранее выписать.
Возведение двучлена a + b в степень n может быть произведено по формуле называемой разложением бинома Ньютона:
(a + b)n = an + C1n an - 1 b + C2n an - 2 b2 +...+Ckn an - k bk +... + Cn - 1n abn - 1 + Cnnbnгде Ckn —все возможные сочетания, которые можно образовать из n элементов по k.
Пример:(a + b)5 = a5 + C15 a4b + C25 a3b2 + C35 a2b3 + C45 ab4 + C55 b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
Таким образом можно записать формулу для возведения двучлена в любую степень. Давайте заметим некоторые свойства у слагаемых в разложении двучлена по формуле Бинома Ньютона.
V) Свойства бинома Ньютона
Число слагаемых на 1 больше степени бинома.
Коэффициенты находятся по треугольнику Паскаля или равны числу сочетаний С, где n – степень двучлена , m – переменная величина, пробегающая значения от 0 до n и соответствующая степени второго выражения.
Коэффициенты симметричны.
Если в скобке знак минус, то знаки + и – чередуются.
Сумма степеней каждого слагаемого равна степени бинома.
Сумма коэффициентов разложения ( a + b) n равна  2 n .
VI) Закрепление нового материала.


Мы знакомились с вами с применением бинома Ньютона при изучении формул сокращенного умножения: Где же ещё применяется Бином Ньютона?
VII) Применение Бинома Ньютона.В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.
Пример.
Доказать, что значение выражения , где n – натуральное число, делится на 16 без остатка.
Решение.
Представим первое слагаемое выражение как и воспользуемся формулой бинома Ньютона:
Полученное произведение доказывает делимость исходного выражения на 16. Бином Ньютона применяется при доказательстве Теоремы Ферма, в теории бесконечных рядов и выводе формулы Ньютона-Лейбница
VIII) Что означает фразеологизм «Бином Ньютона»?Шутливая фраза, применяется по отношению к плевому делу, простой задаче, которую некоторые ошибочно  считают непосильной для выполнения или архисложной. Возникновение фразы: из романа Михаила Булгакова (1891 - 1940 гг.) «Мастер и Маргарита» (1940 г.). Слова Коровьева, которые решил прокомментировать разговор Воланда с буфетчиком Соковым. Буфетчик жалуется на зрителей, которые расплатились с ним фальшивыми деньгами, чем «на сто девять рублей наказали буфет».« - Ну, конечно, это не сумма, - снисходительно сказал Воланд своему гостю, - хотя, впрочем, и она, собственно, вам не нужна. Вы когда умрете?Тут уж буфетчик возмутился.- Это никому не известно и никого не касается, - ответил он.- Ну да, неизвестно, - послышался все тот же дрянной голос (Коровьева) из кабинета, - подумаешь, бином Ньютона! Умрет он через девять месяцев, в феврале будущего года, от рака печени в клинике Первого МГУ, в четвертой палате».
IX) Итоги урока. Рефлексия
Подумаешь, Бином Ньютона
Оскар Хуторянский"Подумаешь, Бином Ньютона"Кот промяукал Бегемот(Он Воланда слуга покорный),Предсказывая жизни ход.  Все это только подтверждаетНьютона гений, но давноБином известен был в Китае,Арабы знали про него. Но обобщил Ньютон решение,Возвёл он в степень многочлен...Избавил нас от всех сомненийДругих же нет у нас проблем.  Скажите нам совсем без пренийЗачем нам нужен тот бином?Комбинаторику явленийМы без бинома не найдём. Nov. 7, 2015
- Что нового вы узнали на уроке? Важна ли эта формула для математики? Трудно ли вам было усваивать новый материал?
Домашнее задание. Подготовка к контрольной работе.
1. Из 12 членов команды нужно выбрать капитана и заместителя. Сколькими способами можно это сделать?
2.Вычислите: 4Р3+3А210-С25
Выпускники экономического института работают в трех различных организациях: 17 человек в банке,23- в фирме и 19-в налоговой инспекции. Найдите вероятность того, что случайно встреченный выпускник работает в банке?
Имеется 8 различных книг 2 из которых сборники стихов. Сколькими способами можно расставить эти книги на полке так, чтобы справочники оказались рядом?
Для игры в КВН нужно выбрать команду из 6 человек, Сколькими способами можно это сделать, если в команде должно быть мальчиков и девочек поровну, и в классе 12 девочек и 10 мальчиков?
Сколько трехзначных чисел с разными цифрами можно составить из цифр , 0,1,3,6,7,9?
Разложите на множители: (a-b)9 и (3x+y)10

Приложенные файлы

  • docx file4
    Размер файла: 248 kB Загрузок: 2

Добавить комментарий