Управление образования администрации города Чебоксары
Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №42» города Чебоксары
Чувашской Республики
Принята
на заседании ШМО
Руководитель ШМО
__________________
протокол №_____
«____»______________20__г.
Утверждаю
Директор МБОУ «СОШ № 42»
г.Чебоксары
_____________ Э.С.Анисимова
приказ №______
«___»___________ 20__г.
Рабочая программа
учителя Беловой Елены Ивановны
по предмету алгебра
8 класс
Планирование составлено на основе Государственной программы:
Программы. Математика 5-6 классы. Алгебра. 7-9 классы. Алгебра и начала анализа. 10-11 классы./авт.-сост. И.И. Зубарева, А.Г.Мордкович. –
М. : Мнемозина, 2011
Учебно-методический комплект (Издательство Мнемозина)
Алгебра (в 2-х частях) ч.1: Учебник (8 класс) А.Г. Мордкович.
Алгебра. ч.2: Задачник (8 класс). А.Г. Мордкович, Л.А. Александрова и др.
Самостоятельные работы. Л.А. Александрова. Алгебра./ Под ред. А.Г. Мордковича/
Алгебра. Контрольные работы. Л.А. Александрова/ Под ред. А.Г. Мордковича/
Подпись учителя ____________________
Пояснительная записка
Цели курса:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи курса:
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для :
практических расчетов по формулам, составления формул, нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования этих моделей с помощью аппарата алгебры;
выстраивания аргументаций при доказательстве;
решения уравнений, неравенств и систем, исследования простейших математических моделей;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц.
решения учебных и практических задач, требующих систематического перебора вариантов;
понимания статистических утверждений, сравнения шансов наступления случайных событий.
Отличительные особенности программы (концепция, заложенная в основу курса, особенности контингента и.т.п.):
приоритетной содержательно- методической основой программы является функционально-графическая линия, а идейным стержнем-
математическая модель и математический язык.
главная задача заключается в развитии учащихся посредством продвижения в предмете.
реализованы принципы развивающего обучения: обучение на высоком уровне трудности, прохождение тем быстрым темпом, ведущая роль
теоретических знаний, осмысление процесса обучения ( ученик должен видеть, как он умнеет- это достигается проблемным обучением), развитие
всех учащихся.
Ожидаемые результаты:
знать/понимать:
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- - смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Уметь:
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать квадратные уравнения и рациональные уравнения, сводящиеся к ним;
- решать линейные и квадратные неравенства с одной переменной;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- определять свойства функции по ее графику;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Критерии и нормы оценки знаний обучающихся:
В школе принята 4-бальная шкала отметок: «5» - отлично; «4» - хорошо; «3» - удовлетворительно; «2» - неудовлетворительно.
Оценка устных ответов учащихся
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником, изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если
он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
имелись затруднения или допущены ошибки в определении понятий, использо-вании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Оценка письменных работ учащихся
Отметка «5» ставится, если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что учащийся не владеет
обязательными умениями по данной теме в полной мере.
Сроки реализации программы: 8 класс- 140 ч (4 часа в неделю.
Формы, методы, технологии обучения, способы и средства проверки и оценки результатов лекции, практикумы, проблемные уроки, дифференцированные уроки, поисковые уроки, комбинированные уроки, развивающие уроки, работа в группах.
индивидуальные дифференцированные задания, тесты, контрольные и самостоятельные работы, математические диктанты и др.
Обоснование выбора учебно-методического комплекта для реализации рабочей учебной программы:
Учебно-методический комплект позволяет полностью реализовать рабочую программу, удовлетворяет требованиям федерального учебного базисного плана. УМК рекомендован Министерством образования Российской Федерации, позволяет выполнить образовательный стандарт. Материал комплекта изложен доступным учащимся языком, обеспечен достаточным количеством заданий для реализации личностно-ориентированнного подхода к обучению
Содержание программы
8 класс (140 ч)
Повторение курса 7-ого класса (6 ч)
Алгебраические дроби (29 ч)
Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей.
Сложение и вычитание алгебраических дробей.
Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень.
Рациональное выражение. рациональное уравнение. Решение рациональных уравнений (первые представления).
Степень с отрицательным целым показателем.
Функция y = 13 EMBED Equation.3 1415. Свойства квадратного корня (27 ч)
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел.
Функция y = 13 EMBED Equation.3 1415, ее свойства и график. Выпуклость функции. Область значений функции.
Свойства квадратного корня. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции y = |x|. Формула 13 EMBED Equation.3 1415= |x|.
Квадратичная функция. Функция y = 13 EMBED Equation.3 1415 (23 ч)
Функция y =кx13 EMBED Equation.3 1415, ее график, свойства.
Функция y = 13 EMBED Equation.3 1415, ее свойства, график. Гипербола. Асимптота. Построение графиков функций y = f(x+ l), y = f(x) + m, y = f(x+l) +m, y =-f(x) по известному графику функции y = f(x)/
Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций составленных и функций y = C, y = k x +m, y = 13 EMBED Equation.3 1415.
Графическое решение квадратных уравнений.
Квадратные уравнения (25 ч)
Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. полное (неполное) квадратное уравнение. Корень квадратного уравнения методом разложения на множители, методом выделения полного квадрата.
Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления).
Алгоритм решения рационального уравнения. Биквадратное уравнение. метод введение новой переменной.
Рациональные уравнения как математические модели реальных ситуаций.
Частные случаи формулы корней квадратного уравнения.
Теорема Виета. Разложение квадратного трехчлена на линейные множители.
Иррациональное уравнение. Метод возведения в квадрат.
Неравенства (15 ч)
Свойства числовых неравенств.
Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства.
Квадратное неравенство. Алгоритм решения квадратного неравенства.
Возрастающая функция. Убывающая функция. Исследование функции на монотонность (с использованием свойств числовых неравенств).
Приближенные значения действительных чисел, погрешность приближения по недостатку и избытку. Стандартный вид числа.
Обобщающее повторение (15 ч)
Национально-региональный компонент
Одним из таких дидактических средств может служить система прикладных задач с региональным содержанием. Использование в обучении математике системы прикладных задач с региональным содержанием способствует усилению практической направленности школьного курса математики. Обучение производится с включением краеведческой информации из разных предметных областей (истории, географии, искусства) в программу изучения математики. Закрепление выражается в творческом переосмыслении полученной краеведческой информации, в умении конкретизировать и анализировать исторические и современные тенденции развития Чувашской Республики.
Образование в рамках регионального компонента осуществляется через:
-развитие интеллектуальных умений (понимать, анализировать, синтезировать, применять, обобщать, оценивать);
- рефлексию (осуществлять самонаблюдение, самоанализ, самооценку);
-формирование знаний об истории, культуре, реалиях и традициях своего народа;
-ценностного отношения к себе, другим и миру;
-активной жизненной позиции.
Национально-региональный компонент характеризуют следующие особенности в использовании прикладных задач:
-природно-географические (измерение и вычисление площадей, климат в изучении отрицательных и положительных числах, полезные ископаемые в задачах на проценты);
-социально-географические (плотность населения, традиционные занятия, удаленность от других регионов, средства сообщения в текстовых задачах );
-социально-демографические (национальный состав, миграционные процессы, половозрастная структура, характер воспроизводства населения, типы семьи и др в построении диаграмм, в элементах комбинаторики, статистики и теории вероятностей);
-социально-экономические (типы и характер воспроизводства, профессиональная структура, уровень жизни населения, перспективы экономического развития и др. в построении диаграмм);
-экономические отрасли региона (сельскохозяйственные, строительные, химико-технологические и др.), промышленные и сельскохозяйственные производства(в текстовых задачах и в диаграммах, в элементах комбинаторики, статистики и теории вероятностей)
Тип урока
Форма контроля
УОНМ
Урок ознакомления с новым материалом
УС
Устный счёт
УЗИ
Урок закрепления изученного
УО
Устный опрос
УПЗУ
Урок применения знаний и умений
ФО
Фронтальный опрос
УОСЗ
Урок обобщения и систематизации знаний
СР
Самостоятельная работа
УПКЗУ
Урок проверки и коррекции знаний и умений
ИЗ
Индивидуальное задание
КУ
Комбинированный урок
МТ
Математический тест
УКЗ
Урок коррекции знаний
МД
Математический диктант
ПР
Практическая работа
КР
Контрольная работа
Тематическое планирование алгебры в 8 классе
№
урока
Дата
Тема урока
Планируемые результаты
Тип и форма урока
Вид
контроля, измерителя
ТСО, ЦОР
Примечание
1
Инструктаж по ТБ.
Повторение: числовые и алгебраические выражения
Знать правила действий с одночленами и многочленами
УПЗУ
ФО
2
КУ
ПР
3
УЗИ
МТ
4
Повторение: графики функций.
Развивать умение строить графики на координатной плоскости
УОСЗ
ИЗ
5
Повторение: линейные уравнения и системы уравнений
Повторить понятие уравнения, корней уравнения. Уметь решать уравнения
КУ
СР
6
Обобщающее повторение
Рассмотреть нестандартные задачи по теме
КУ
МТ
Глава 1. Алгебраические дроби (29ч.)
7
8
Основные понятия
Знать понятие алгебраич. дроби и допустимых значений для дроби
УОНМ
УС
«Электронный учебник- справочник. Алгебра. 7-11»,
Развивать умение находить значение алг. дроби, составлять математич. модели
УЗИ
ИЗ
9
10
Основное свойство алгебраической дроби
Сформировать умение приводить дроби к одинак. знаменателю
УОНМ
СР
http://fcior.edu.ru/
Уметь сокращать дроби
КУ
ИЗ
11
12
13
Сложение и вычитание алгебраических дробей с одинаковыми знаменателями
Знать правила сложения и вычитания дробей с один. знаменателями
УПЗУ
ФО
[ Cкачайте файл, чтобы посмотреть ссылку ]
КУ
ИЗ
14
15
16
17
18
Сложение и вычитание алгебраических дробей с разными знаменателями
Сформировать навыки выполнения действий сложения и вычитания алг. дробей
УОНМ
УС
КУ
ИЗ
УКЗ
СР
19
20
21
22
Умножение и деление алгебраических дробей
Знать правила умножения и деления дробей
УОНМ
УОНМ
«Математика5-11 классы. Новые возможности для усвоения курса математики. Учебное электронное издание»,
Развивать умение выполнять действия с алг. дробями
Уметь решать задания различного уровня сложности
КУ
ИЗ
23
Возведение алгебраической дроби в степень
Уметь решать сложные задания
КУ
СР
24
25
Преобразование рациональных выражений
Уметь упрощать выражения, доказывать тождества
КУ
МТ
http://fcior.edu.ru/
26
27
28
29
Первые представления о рациональных уравнениях
Уметь решать простейшие рац. уравнения
УОНМ
УС
УЗИ
ИЗ
30
31
32
33
Степень с отрицательным целым показателем
Знать определение степени с отрицательным показателем, уметь применять при преобразовании выражений
УОНМ
ФО
[ Cкачайте файл, чтобы посмотреть ссылку ]
КУ
УС
34
Подготовка к контрольной работе
Уметь выполнять задания по теме
УКЗ
35
К.р. №1 «Алгебраические дроби»
УПКЗУ
КР
Глава 2. Функция у = 13 EMBED Equation.3 1415. Свойства квадратного корня ( 27 ч).
36
37
38
Рациональные числа
Знать понятие рационального числа
КУ
УС
http://fcior.edu.ru/
39
40
41
Понятие квадратного корня из неотрицательного числа
Уметь вычислять квадратный корень из неотрицательного числа
УОНМ
[ Cкачайте файл, чтобы посмотреть ссылку ]
УЗИ
УО
42
43
Иррациональные числа
Развитие умения вычисления кв. корня
УОСЗ
СР
44
45
Множество действительных чисел
Уметь выполнять ариф. операции во мн-ве дейст. чисел
УПЗУ
МД
46
47
48
49
Функция у=13 EMBED Equation.3 1415, ее свойства и график
Знать алгоритм построения графика функции
УОНМ
«Виртуальная школа Кирилла и Мефодия. Уроки алгебры 7-8 классы
уметь применять ее свойства на практике
КУ
СР
50
51
52
Свойства квадратных корней
Уметь вычислять квадратные корни используя свойства
КУ
МТ
53
54
55
56
Преобразование выражений, содержащих операцию извлечения квадратного корня
Уметь применять свойства кв. корней при преобразовании выражений различного уровня сложности
УОСЗ
КУ
СР
УКЗ
57
К.р. №2 «Квадратные корни»
УПКЗУ
КР
58
59
60
Модуль действительного числа
Знать определение модуля
УОНМ
МТ
[ Cкачайте файл, чтобы посмотреть ссылку ]
уметь преобразовывать выражения, содержащие знак модуля
КУ
61
62
График функции у=/х/
Уметь строить график функции
УПЗУ
СР
Глава 3. Квадратичная функция.(23) ч.)
63
64
65
66
Функция у = кхІ, ее свойства и график
Уметь строить и читать график
КУ
ИЗ
СР
67
68
69
Функция у = 13 EMBED Equation.3 1415, ее свойства и график
Уметь строить и читать график
КУ
ИЗ
70
71
72
Как построить график функции у = f(x+l), если известен график функции
у = f(x)
Знать алгоритм построения графика функции у = f(x+l) для разных функций
УПЗУ
ИЗ
73
74
75
Как построить график функции у = f(x)+m, если известен график функции
y = f(x)
Знать алгоритм построения графика функции у = f(x)+m для разных функций
УПЗУ
http://fcior.edu.ru/
МТ
76
77
78
Как построить график функции у = f(x+l)+m, если известен график функции
y = f(x)
Знать алгоритм построения графика функции у = f(x+l)+m для разных функций
УПЗУ
СР
79
80
81
82
Функция у=ахІ+вх+с, ее свойства и график
Знать алгоритм построения графика функции у=ахІ+вх+с уметь читать график
КУ
УС
ИЗ
СР
83
84
Графическое решение квадратных уравнений
Знать способы решения и уметь применять на практике
УОНМ
85
К.р. №3 «Квадратичная функция»
УПКЗУ
КР
Глава 4. Квадратные уравнения.(25 ч.)
86
87
88
Основные понятия
Знать понятие квадратного уравнения, корня кв. уравнения.
УОНМ
Уметь решать неполные кв. уравнения
УОСЗ
ИЗ
89
90
91
92
Формулы корней квадратного уравнения
Знать способ решения кв. ур. с помощью формулы корней
УОНМ
УО
«Виртуальная школа Кирилла и Мефодия. Уроки алгебры 7-8 классы
Знать правила оформления решения задач с помощью кв. ур.
УОСЗ
МТ
Уметь решать различные задания, решающиеся с помощью кв. ур.
УПКЗУ
СР
93
94
95
96
Рациональные уравнения
Уметь решать биквадратные уравнения
УПЗУ
УС
http://fcior.edu.ru/
Уметь решать рац. ур различной сложности
УКЗ
ПР
Знать разнообразные способы решения рац. ур.
КУ
ИЗ
97
К.р.№4 «Квадратные уравнения»
УПКЗУ
КР
98
99
100
101
Рациональные уравнения как математические модели реальных ситуаций
Уметь составлять рац. ур по условию задачи. Знать способы их решения, применяя матем. модели
УПЗУ
КУ
ИЗ
УКЗ
СР
102
103
Частные случаи формулы корней квадратного уравнения
Знать формулу корней кв. ур. с четным вторым коэффициентом
КУ
ИЗ
104
105
106
Теорема Виета
Знать теорему Виета, уметь ее применять
Уметь решать задания на разложение на множители, сокращать дроби
УОНМ
КУ
УС
ПР
107
К.р .№5 «Применение квадратного уравнения»
УПКЗУ
КР
108
109
110
Иррациональные уравнения
Знать понятия равносильных уравнений и правила решения иррациональных уравнений
КУ
УОСЗ
МТ
Глава 5. Неравенства.(15ч.)
111
112
113
Свойства числовых неравенств
Знать свойства неравенств, уметь сравнивать числа и выражения, пользуясь свойствами
УОНМ
ФО
Уметь пользоваться свойствами неравенств для решения различных заданий
КУ
СР
114
115
116
Исследование функции на монотонность
Уметь находить промежутки возрастания и убывания для различных функций
УПЗУ
ИЗ
117
118
Решение линейных неравенств
Знать правила решения и оформления решения лин. неравенств
УОНМ
УО
Уметь решать линейные неравенства различного уровня сложности
УПЗУ
СР
119
120
121
Решение квадратных неравенств
Знать схему решения кв. нерав.
УОНМ
Уметь решать кв. нер. различного уровня сложности
УПЗУ
ИЗ
Знать решения различных заданий с использованием кв. нер.
УКЗ
122
К.р. №6 «Неравенства»
УПКЗУ
КР
123
Приближенные значения действительных чисел
Уметь находить приближенные значения
УОНМ
УС
124
125
Стандартный вид числа
Уметь приводить числа к стандартному виду
УОНМ
МТ
Итоговое повторение(15 ч.)
126
127
Итоговое повторение «Алгебраические дроби»
Знать алгоритм выполнения ариф. операций с алгебраич.
дробями
КУ
МТ
128
Итоговое повторение «Алгебраические дроби»
Знать алгоритм выполнения ариф. операций с алгебраич. дробями
КУ
МТ
129
Итоговое повторение «Алгебраические дроби»
Знать алгоритм выполнения ариф. операций с алгебраич. дробями
КУ
МТ
130
131
Итоговое повторение «Функции»
Уметь строить графики функций и читать их
КУ
МТ
132
Итоговое повторение «Функции»
Уметь строить графики функций и читать их
КУ
МТ
133
134
135
Итоговое повторение «Квадратные уравнения»
Уметь применять разнообразные алгоритмы при решении кв. ур.
КУ
МТ
136
Итоговое повторение «Квадратные уравнения»
Уметь применять разнообразные алгоритмы при решении кв. ур.
КУ
МТ
137
Итоговая контрольная работа
УПКЗУ
КР
138
139
140
Обобщающее повторение
Уметь решать задания различного уровня сложности
УКЗ
МТ
Перечень контрольных работ.
класс:
К.р. №1 «Алгебраические дроби»
К.р. №2 «Квадратные корни»
К.р. №3 «Квадратичная функция»
К.р.№4 «Квадратные уравнения»
К.р .№5 «Применение квадратного уравнения»
К.р. №6 «Неравенства»
Итоговая контрольная работа
Учебно-методическое и информационное обеспечение курса.
А.Г. Мордкович. Алгебра (в 2-х частях) ч.1: Учебник (8 класс)
А.Г. Мордкович, Л.А. Александрова и др. Алгебра. ч.2: Задачник (8 класс).
Л.А. Александрова .Алгебра. Самостоятельные работы./ Под ред. А.Г. Мордковича/
Л.А. Александрова .Алгебра. Контрольные работы./ Под ред. А.Г. Мордковича/
http://school-collection.edu. ru;
http://fcior.edu.ru/
СD-ROM «Математика5-11 классы. Новые возможности для усвоения курса математики. Учебное электронное издание»,
СD-ROM «Виртуальная школа Кирилла и Мефодия. Уроки алгебры 7-8 классы».
Список дополнительной литературы
Алгебра. Контрольно-измерительные материалы. 8 класс. М. «Вако»
Ф. Ф. Лысенко «Алгебра. Тесты для промежуточной аттестации. 7-8 класс». Изд. Легион
М.Л. Галицкий «Сборник задач по алгебре. 8-9 класс», М., «Просвещение»
Использование здоровьесберегающих технологий на уроках:
соблюдение светового и температурного режима,
систематическое проветривание кабинета,
дыхательные упражнения, упражнения для глаз и позвоночника,
смена видов деятельности на уроках,
динамика урока,
психологическая комфортность урока.
Root Entry