Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
ГЕОМЕТРИЧЕСКИЕ ЗАДАЧИ(от неравенства треугольника…)Подборка задач к занятиям по математике. ГЕОМЕТРИЧЕСКИЕ ЗАДАЧИ Пожалуй, самыми интересными и сложными среди олимпиадных задач являются задачи по геометрии. Мы не будем разбирать сложные задачи, ограничившись только отдельными подходами к решению геометрических задач. Даже их классификация представляет затруднения. Некоторые из задач можно назвать задачами геометрическими условно, ведь они сводятся к элементарным вычислениям. В таких задачах важнее всего идея решения.1. Неравенство треугольника Отдельного разговора требуют геометрические задачи с неравенствами. Неравенство треугольника — самое фундаментальное геометрическое неравенство, недаром его учат в школе. Именно поэтому полезно выяснить у школьников, знают ли они его, решали ли задачи на его применение. Конечно, необходимо напомнить о том, что кратчайшим путем между двумя точками является отрезок прямой. Итак, неравенство треугольника: для произвольного треугольника ABC AB < ВС + АС. Сформулируем необходимые для нас теоремы. Теорема 1. Для любых трех точек А, В и С на плоскости АС > |АВ - ВС|. Доказательство этой теоремы не представляет сложности для читателей. Примечание. Сформулировав теорему, дадим ее очевидное геометрическое истолкование: длина любой стороны треугольника не меньше модуля разности длин двух других сторон. Теорема 2. Длина любой стороны треугольника не превосходит его полупериметра. Задачи.Задача 1. С помощью циркуля и линейки разделить угол в 19° на 19 равных частей. РешениеЗадача 2. Нарисовать треугольник, который можно разделить на 5 равных треугольников. РешениеЗадача 3. Имеется несколько кирпичей. Необходимо, не используя теорему Пифагора, при помощи линейки определить длину наибольшей диагонали кирпича.РешениеЗадача 4. Найти внутри выпуклого четырехугольника такую точку, сумма расстояний от которой до вершин минимальна.РешениеЗадача 5. На плоскости дан квадрат ABCD и точка О. Докажите, что расстояние от точки О до одной из вершин квадрата не превосходит суммы расстояний от О до трех других вершин квадрата. Решение Задача 6. Грибник выходит из леса в заданной точке. Ему необходимо дойти до шоссе, которое представляет собой прямую линию, где у него собранные грибы заберет сын, приехавший на машине; а далее зайти в лес в другой точке, в которой ожидает его жена. Как ему это сделать, пройдя по самому короткому пути? Примечание. Эта задача имеет много видоизменений: например, нужно найти точку, в которой ворона, сидящая на дереве, может подобрать рассыпанное на земле зерно и приземлиться на заборе, если по двору бегает кошка. РешениеЗадача 7. Полуостров имеет форму острого угла, внутри которого находится дом лесника. Как леснику, выйдя из дома, добраться до одного из берегов полуострова, затем до другого и вернуться домой, пройдя при этом по самому короткому пути? РешениеЗадача 8. Точка О лежит внутри треугольника ABC. Доказать, что АО + ОС < АВ + ВС. Решение Решение. Ясно, что задача сводится к построению угла в 1°, далее все просто. Заметим, что 19 х 19 = 361, то есть сумма девятнадцати углов в 19° есть окружность плюс 1°. Сложение углов при помощи циркуля и линейки является стандартной, хорошо решаемой задачей. Получив угол в 1°, далее отложим этот угол девятнадцать раз и получим угол в 19°. Задача решена. Решение. Очевидно, что треугольник можно разделить на 4 равные части. Далее к этому треугольнику требуется «приставить» его четвертую часть; при этом снова должен получиться треугольник. Это возможно только в том случае, когда треугольник является прямоугольным, ведь только тогда сумма двух прямых углов даст развернутый угол (отрезок, который является стороной треугольника, при этом будет суммой сторон большого треугольника и его «четвертушки»). Покажем на рисунке решение задачи. Необходимо нарисовать прямоугольный треугольник, у которого один катет в два раза длиннее другого. Решение. Решение задачи представлено на рисунке. Необходимо сложить три кирпича и измерить расстояние между точками А и В. Это диагональ несуществующего кирпича Решение. Поскольку четырехугольник выпуклый, его диагонали пересекаются в точке О. Обозначим вершины четырехугольника через А, В, С и D. Тогда сумма расстояний от О до вершин равна сумме длин диагоналей АС и BD. Но для любой другой точки Р РА + PC > АС по неравенству треугольника, и, аналогично, РВ + PD > BD. Значит, сумма расстояний от Р до вершин не меньше АС + BD, и, очевидно, что эта сумма равна АС + BD, только если Р совпадает с точкой О. Значит, точка О — искомая. Решение. Сложим неравенства треугольника АС + ОС > ОА и OB + OD > BD. Так как АС = BD, то сокращая, получаем требуемое неравенство ОС + OB + OD > ОА. Решение. Покажем на рисунке решение этой задачи: Пусть грибник выходит из леса в точке А, а должен зайти в лес в точке В. Для решения задачи симметрично прямой — шоссе отобразим точку В, получив точку В1. Далее, проведя прямую АВ1, получим точку D, которая и является искомой в задаче точкой. BD = B'D, ВС = В'С, тогда ясно, что для любой другой точки F AF + FB' > AD + DB'.Расстояние AD + BD является наименьшим для выхода на шоссе из леса и захода в лес в заданной точке (D). Решение. Решение задачи изображено на рисунке:Ясно, что задача основана на симметричном отображении точки А относительно двух сторон угла. Примечание. Осевая симметрия не меняет расстояний. Общая идея при решении всех рассматриваемых задач: искомый путь преобразуется некоторым образом так, что его длина не изменяется, причем после этих преобразований решаемая задача превращается в такую: соединить две данные точки путем минимальной длины. Важное условие, которое необходимо проверить: этот преобразованный путь должен быть прямолинейным. Доказательство. Продолжим отрезок АО до пересечения со стороной треугольника D. Далее сложим неравенства треугольника АВ + BD > АО + OD и OD + DO ОС, получим АВ + BD + OD + DO АО + OD + ОС и, сократив на OD обе части неравенства, получим искомое АО + ОС < АВ + ВС, поскольку BD + DC = ВС.
Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации: