Великие математики 4


Чтобы посмотреть презентацию с оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов:

9б класс «Основатели» математики… Бо́льшая часть античных сочинений по математике не дошла до наших дней и известна только по упоминаниям позднейших авторов и комментаторов, в первую очередь Паппа Александрийского (III век), Прокла (V век), Симпликия (VI век) и др. Среди сохранившихся трудов в первую очередь следует назвать «Начала» Евклида и отдельные книги Аристотеля, Архимеда, Аполлония и Диофанта. Первые научные школы. В VI веке до н. э. «греческое чудо» начинается: появляются сразу две научные школы — ионийцы (Фалес Милетский, Анаксимен, Анаксимандр) и пифагорейцы. О достижениях ранних греческих математиков мы знаем в основном по упоминаниям позднейших авторов, преимущественно комментаторов Евклида, Платона и Аристотеля. Фалес Фалес, богатый купец, хорошо изучил вавилонскую математику и астрономию — вероятно, во время торговых поездок. Ионийцы, по сообщению Евдема Родосского, дали первые доказательства нескольких простых геометрических теорем — например, о том, что вертикальные углы равны. Однако главная роль в деле создания античной математики принадлежит пифагорейцам. Пифагор Пифагор, основатель школы — личность легендарная, и достоверность дошедших до нас сведений о нём проверить невозможно. Видимо, он, как и Фалес, много путешествовал и тоже учился у египетских и вавилонских мудрецов. Вернувшись около 530 г. до н. э. в Великую Грецию (район южной Италии), он в городе Кротон основал нечто вроде тайного духовного ордена. Именно он выдвинул тезис «Числа правят миром», и с исключительной энергией занимался его обоснованием. В начале V в. до н. э., после неудачного политического выступления, пифагорейцы были изгнаны из Южной Италии, и союз прекратил свое существование, однако популярность учения от рассеяния только возросла. Пифагорейские школы появились в Афинах, на островах и в греческих колониях, а их математические знания, строго оберегаемые от посторонних, сделались общим достоянием. Многие достижения, приписываемые Пифагору, вероятно, на самом деле являются заслугой его учеников. Пифагорейцы занимались астрономией, геометрией, арифметикой (теорией чисел), создали теорию музыки. Пифагор первый из европейцев понял значение аксиоматического метода, чётко выделяя базовые предположения (аксиомы, постулаты) и дедуктивно выводимые из них теоремы. Геометрия пифагорейцев в основном ограничивалась планиметрией (судя по дошедшим до нас позднейшим трудам, очень полно изложенной) и завершалась доказательством «теоремы Пифагора». Хотя изучались и правильные многогранники. Пифагорейцы Пифагорейцы далеко продвинулись в теории делимости, но чрезмерно увлеклись «треугольными», «квадратными», «совершенными» и т. п. числами, которым, судя по всему, придавали мистическое значение. Видимо, правила построения «пифагоровых троек» были открыты уже тогда; исчерпывающие формулы для них приводятся у Диофанта. Теория наибольших общих делителей и наименьших общих кратных тоже, видимо, пифагорейского происхождения. Они построили общую теорию дробей (понимаемых как отношения (пропорции), так как единица считалась неделимой), научились выполнять с дробями сравнение (приведением к общему знаменателю) и все 4 арифметические операции. Пифагорейцы знали, задолго до «Начал» Евклида, деление целых чисел с остатком и «алгоритм Евклида» для практического нахождения наибольшего общего делителя. Непрерывные дроби как самостоятельный объект выделили только в Новое время, хотя их неполные частные естественным путём получаются в алгоритме Евклида. Пифагорейцы Зенон Элейский Второй удар по пифагореизму нанёс Зенон Элейский, предложив ещё одну тему для многовековых размышлений математиков. Он высказал более 40 парадоксов (апорий), из которых наиболее знамениты четыре. Вопреки многократным попыткам их опровергнуть и даже осмеять, они, тем не менее, до сих пор служат предметом серьёзного анализа. Здесь затронуты самые деликатные вопросы оснований математики — конечность и бесконечность, непрерывность и дискретность. Математика тогда считалась средством познания реальности, и суть споров можно было выразить как неадекватность непрерывной, бесконечно делимой математической модели физически дискретной материи. Зенон Элейский Демокрит В конце V века до н. э. жил ещё один выдающийся мыслитель — Демокрит. Он знаменит не только созданием концепции атомов. Архимед писал, что Демокрит нашёл объём пирамиды и конуса, но доказательств своих формул не дал. Вероятно, Архимед имел в виду доказательство методом исчерпывания, которого тогда ещё не существовало. Архимед Фундамент математики, описанный Евклидом, расширил другой великий учёный — Архимед, один из немногих математиков античности, которые одинаково охотно занимались и теоретической, и прикладной наукой. Он, в частности, развив метод исчерпывания, сумел вычислить площади и объёмы многочисленных фигур и тел, ранее не поддававшихся усилиям математиков. Учителя - математики. Уже к началу IV века до н. э. греческая математика далеко опередила всех своих учителей, и её бурное развитие продолжалось. В 389 году до н. э. Платон основывает в Афинах свою школу — знаменитую Академию. Математиков, присоединившихся к Академии, можно разделить на две группы: на тех, кто получил своё математическое образование вне Академии, и на учеников Академии. К числу первых принадлежали Теэтет Афинский, Архит Тарентский и позднее Евдокс Книдский; к числу вторых — братья Менехм и Динострат.

Приложенные файлы


Добавить комментарий