352996522860
Грегор Иоганн Мендель (22 июля1822 –6 января1884). Ввёл понятие «ген» 1865 год– доложил о своих экспериментах на заседаниях Общества Естествознания в Брюнне 1866 год–вышла его книга «Эксперимент с растительными гибридами» 1868 год–стал аббатом
Решение задач по генетике на законы Менделя
План решения задачи по генетике.
1. Условие задачи необходимо записать в виде символов. Вначале записывают, что дано (признаки родительских форм) и что требуется определить (признаки потомков):
2. Определение типа задачи. Необходимо выяснить, сколько пар генов кодирует эти признаки, число фенотипических классов в потомстве и их количественное соотношение. Кроме этого, следует учитывать, связано ли наследование признака(-ов) с половыми хромосомами, сцепленное оно или независимое, а также какие гены взаимодействуют при наследовании — аллельные или неаллельные. 3. Решение задачи. Решать генетическую задачу необходимо в определённой последовательности. Сначала составляют цитологическую схему скрещивания родительских форм (указывают фенотипы), их гаметы, а затем решётку Пеннета для расчёта возможных типов зигот (потомков) и их фенотипы.При записи гамет учащиеся должны помнить, что: • каждая гамета получает гаплоидный (одинарный) набор хромосом (генов); • все гены имеются в гаметах; • в каждую гамету попадает только одна гомологичная хромосома из каждой пары, то есть только один ген из каждой аллели; • потомок получает одну гомологичную хромосому (один ал- лельный ген) от отца, а другой аллельный ген — от матери; • гетерозиготные организмы при полном доминировании всегда проявляют доминантный признак, а организмы с рецессивным признаком всегда гомозиготны. В решётке Пеннета по горизонтали располагают женские гаметы, а по вертикали — мужские. В ячейки решётки вписывают образующиеся сочетания гамет — зиготы. Затем записывают фенотипы потомства. 4. Объяснение решения задачи. Необходимо указать, по каким законам и принципам происходит наследование признаков. 5. Ответ. В ответе необходимо ответить на все вопросы, поставленные в задаче.
Символ Характеристика
женский организм
мужской организм
Х знак скрещивания
P родительские организмы
F1, F2 потомки, гибриды первого и второго поколения
A,B,C,D.... гены, которые кодируют доминантные признаки
AA,BB,CC,
DD.... гены, которые кодируют рецессивные признаки
aa,bb,cc,dd генотипы моногомозиготных особей по рецессивному признаку
Aa,Bb,Cc,Dd генотипы моногетерозиготных особей
AABB,AABBCC генотипы ди- и тригомозиготных особей
AaBb, AaBbCc генотипы ди и тригетерозиготных особей
A B
a b генотипы дигетерозигот в хромосомном виде при независимом наследовании признаков
CD
cd генотипы дигетерозигот в хромосомном виде при сцепленном наследовании признаков
A;B;с или AB; Ab; aBc... гаметы
Словарь основных понятий и терминов.
Аллельные гены (аллели) — разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки — признаки, которые не могут быть в организме одновременно.
Альтернативные признаки – взаимоисключающие, контрастные признаки.
Гаметы (от греч. «гаметес» – супруг) – половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в «чистом» виде, т.к. образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.
Ген (от греч. «генос» – рождение) – участок молекулы ДНК, , несущий информацию о первичной структуре одного белка. Ген — это структурная и функциональная единица наследственности.
Гены аллельные – парные гены, расположенные в идентичных участках гомологичных хромосом.
Генотип – совокупность полученных от родителей наследственных признаков организма – наследственная программа развития.
Гетерозигота (от греч. «гетерос» – другой и зигота) – зигота, имеющая два разных аллеля по данному гену (Аа, Вb). Гетерозиготная особь в потомстве дает расщепление по данному признаку.
Гомозигота (от греч. «гомос» – одинаковый и зигота) – зигота, имеющая одинаковые аллели данного гена (оба доминантные или оба рецессивные). Гомозиготная особь в потомстве не дает расщепления.
Гомологичные хромосомы (от греч. «гомос» – одинаковый) – парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный: одна хромосома из пары материнского происхождения, вторая – отцовская.
Гомозиготный организм — организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.
Гетерозиготный организм — организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.
Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.
Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.
Генотип — совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.
Признак доминантный (от лат. «доминас» – господствующий) – преобладающий признак, проявляющийся в потомстве у гетерозиготных особей.
Признак рецессивный (от лат. «рецессус» – отступление) – признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.
Скрещивание анализирующее – скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого.
Скрещивание дигибридное – скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.
Скрещивание моногибридное – скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.
Фенотип – совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой.
Таблица 5. Законы Г.Менделя
Название Год Формулировка
Правило единообразия гибридов первого поколения (первый закон Менделя) 1865 г. При моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки – оно фенотипически и генотипически единообразно
Закон расщепления (второй закон Менделя) 1865 г. При скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3 : 1 – образуются две фенотипические группы (доминантная и рецессивная); 1 : 2 : 1 – три генотипические группы
Закон независимого наследования (третий закон Менделя) 1865 г. При дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает расщепление 3:1, образуя при этом четыре фенотипические группы, характеризующиеся отношением 9 : 3 : 3 : 1 (при этом образуется девять генотипических групп – 1 : 2 : 2 : 1 : 4 : 1 : 2 : 2 : 1)
Гипотеза (закон) чистоты гамет 1865 г. Находящиеся в каждом организме пары альтернативных признаков не смешиваются при образовании гамет и по одному от каждой пары переходят в них в чистом виде
Таблица 6. Соотношение между числом пар генов, участвующих в скрещивании, и числом фенотипических и генотипических классов в F2
Число пар генов, участвующих в скрещивании Число различных сортов гамет, образуемых гибридом Число генотипов Число возможных сочетаний гамет, образованных в F1 Число фенотипов (при полном доминировании)
1
2
3
... 2
4
8
... 3
9
27
... 4
16
64
... 2
4
8
...
n 2n 3n 4n 2n
Основные правила, помогающие в решении генетических задач.
Правило 1.
Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков в соотношении 3 : 1, то эти особи гетерозиготны. (Моногибридное скрещивание при полном доминировании.)
Правило 2.
Если при скрещивании фенотипически одинаковых (по одной паре признаков) особей в первом поколении гибридов происходит расщепление признака на три фенотипические группы в соотношении 1 : 2 : 1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны. (Моногибридное скрещивание при неполном доминировании.)
Правило 3.
Если в результате скрещивания особей, отличающихся друг от друга фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по той же паре признаков в соотношении 1 : 1, то одна из родительских особей была гетерозиготна, а другая – гомозиготна по рецессивному признаку.
Правило 4.
Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9 : 3 : 3 : 1, то исходные (данные) особи были дигетерозиготными. (Дигибридное скрещивание.)
Типы задач.
Все генетические задачи, какой бы темы они ни касались (моно- или полигибридное скрещивание, аутосомное или сцепленное с полом наследование, наследование моно- или полигенных признаков), сводятся к трем типам: 1) расчетные; 2) на определение генотипа; 3) на определение характера наследования признака.
В условии расчетной задачи должны содержаться сведения:– о характере наследования признака (доминантный или рецессивный, аутосомный или сцепленный с полом и др.);– прямо или косвенно (через фенотип) должны быть указаны генотипы родительского поколения. Вопрос расчетной задачи касается прогноза генетической и фенотипической характеристик потомств
В условии задачи на определение генотипа должна содержаться информация:– о характере наследования признака;– о фенотипах родителей;– о генотипах потомства (прямо или косвенно).Вопрос такой задачи требует характеристики генотипа одного или обоих родителей.
В условиях задач на установление характера наследования признака:– предлагаются только фенотипы следующих друг за другом поколений (то есть фенотипы родителей и фенотипы потомства);– содержится количественная характеристика потомства. В вопросе такой задачи требуется установить характер наследования признака.
Закономерности наследственности.
Условные обозначения: Р - родители, F - поколение (дети), г - гаметы, А, В - доминантные признаки; а, в - рецессивные признаки
ТИП СКРЕЩИВАНИЯ СХЕМА СКРЕЩИВАНИЯ ЗАКОН. АВТОР
I. Моногибридное скрещивание по одной паре признаков.1. При полном доминировании проявляется только доминантный признак.2. При неполном доминировании признак имеет среднее (промежуточное) значение между доминантным и рецессивным
Скрещивание гибридов
при полном доминировании.
при неполном доминировании. I. Закон единообразия первого поколения. (Г. Мендель).При скрещивании двух особей с противоположными признаками в первом поколении все гибриды одинаковы и похожи на одного из родителей.II. Закон расщепления.(Г.Мендель).При скрещивании гибридов I поколения во втором поколении наблюдается расщепление в соотношении 3:1 по фенотипу.
II. Дигибридное –
13398501162050это скрещивание по двум парам признаков
Скрещивание гибридов
Закон единообразия I поколения соблюдается. III. Закон независимого наследования признаков (Г. Мендель).При скрещивании гибридов I поколения по двум парам признаков наследование по каждой паре признаков идет независимо друг от друга и образуются четыре фенотипические группы с новыми сочетаниями.Расщепление по фенотипу 9:3:3:1
III. Анализирующее - это скрещивание особи с доминантным фенотипом с особью с рециссивными признаками (гомозиготой) для определения генотипа особи с доминантным признаком I вариантII вариант Если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство единообразно, то анализируемая особь с доминантным признаком гомозиготна (АА).Если при скрещивании особи с доминантным признаком с рецессивной гомозиготой полученное потомство дает расщепление 1 : 1 , то анализируемая особь с доминантным признаком гетерозиготна (Аа).
V. Генетика полаПол определяется наличием пары половых хромосом.Все остальные пары хромосом в кариотипе называются аутосомами. I вариантСоотношение полов 1:1 II вариантСоотношение полов 1:1 III вариантСоотношение полов 1:1 Пол организма определяется сочетанием половых хромосом.Пол, содержащий одинаковые половые хроммосомы (XX), называется гомогаметным, а различные половые хромосомы (XY) - гетерогаметным.Гетерогаметные особи образуют два типа гамет. У большинства организмов (млекопитающих, амфибий, рептилий, многих беспозвоночных) женский пол гомогаметный, а мужской - гетерогаметный (I вариант)У птиц, некоторых рыб, бабочек гетерогаметны самки, а гомогаметны самцы (II вариант)У прямокрылых, пауков, жуков самцы не имеют Y хромосому из пары. Тип ХО.
VI. Наследование признаков, сцепленных с полом.Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом Если одна из X хромосом содержит рецессивный ген, определяющий проявления аномального признака, то носителем признака является женщина, а признак проявляется у мужчин.Рецессивный признак от матерей передается сыновьям и проявляется, а от отцов передается дочерям.Примером наследования признаков, сцепленных с полом у человека, является гемофилия и дальтонизм.
Рекомендации к теме
Проработав эти темы, Вы должны уметь:
Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
Уметь решать по данному алгоритму простейшие генетические задачи:
Алгоритм решения задач
Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный.
Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
Запишите генотип гибридов F1.
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.
Схема оформления задач.
Буквенные обозначения:а) доминантный признак _______________б) рецессивный признак _______________
генотип особи с доминантным признаком генотип особи с рецессивным признаком
Р(генотипы родителей) ? X(знак скрещивания) ?
Гаметы
F1 (генотип первого поколения)
гаметы
? ?
Решетка Пеннета
F2 гаметы ? ?
?
?
Соотношение фенотипов в F2:_____________________________Ответ:_________________________
Законы Г. Менделя.
Первый закон Менделя — закон единообразия гибридов F1
Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.
Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.
Для записи результатов скрещивания Менделем была предложена следующая схема:
А — желтая окраска семяна — зеленая окраска семян
Р (родители) АА аа
Г (гаметы) А а
F1 (первое поколение) Аа(все растения имели желтые семена)
Примеры решения задач на моногибридное скрещивание.
Задача1. "В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз - моногенный аутосомный признак".Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в том случае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын - аа.
Задача 2: Скрестили белых кроликов с черными кроликами (черный цвет — доминантный признак). В F1 — 50% белых и 50%черных. Определите генотипы родителей и потомства.
Решение: Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.
Р Аа (черный) аа (белый)
Г А, а а
F1 Аа (черные) : аа (белые)1 : 1
Второй закон Менделя — закон расщепления.
Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено F2.
Р (F1) Aa Aa
Г А; a А; a
F2 АА; Аа; Аа; аа(75% растений имеют доминантный признак,25% — рецессивный)
Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении 3:1, а по генотипу — 1:2:1.
Третий закон Менделя — закон независимого наследования
Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.
В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.
А — желтая окраска семян, а — зеленая окраска семян,В — гладкая форма, в — морщинистая форма.
Р ААВВ аавв
Г АВ ав
F1 АаВв100% (желтые гладкие).
Затем Мендель из семян F1 вырастил растения и путем самоопыления получил гибриды второго поколения.
Р АаВв АаВв
Г АВ, Ав, аВ, ав АВ, Ав, аВ, ав
F2 Для записи и определения генотипов используется решетка Пеннета
Гаметы АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв Аавв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв аавв
В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный (желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный (зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые и морщинистые).
При анализе наследования каждой пары признаков получаются следующие результаты. В F2 12 частей желтых семян и 4 части зеленых семян, т.е. соотношение 3:1. Точно такое же соотношение будет и по второй паре признаков (форме семян).
Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.
Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.
Закон (гипотеза) «чистоты» гамет.
При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.
Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.
Анализирующее скрещивание.
Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.
Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.
Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1, то исходный организм содержит гены в гетерозиготном состоянии.
Наследование групп крови (система АВ0).
Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена (i0, IА, IВ), кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа i0i0; вторая IАi0 и IАIА; третья IВIВ и IВi0 и четвертая IАIВ.
Наследование признаков, сцепленных с полом.
У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — Y и Х.
У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом ХХ, мужской пол — ХY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным — самки (ХY).
В ОГЭ и ЕГЭ включены задачи только на признаки, сцепленные с Х-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (ХН — норма; Xh — гемофилия), цветовое зрение (ХD — норма, Xd — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.
У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): ХНХН — здорова; ХНXh — здорова, но является носительницей; ХhХh — больна. Мужской пол по этим генам является гомозиготным, т.к. Y-хромосома не имеет аллелей этих генов: ХНY — здоров; XhY — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.
Определение числа типов гамет.
Определение числа типов гамет проводится по формуле: 2n, где n — число пар генов в гетерозиготном состоянии. Например, у организма с генотипом ААввСС генов в гетерозиготном состоянии нет, т.е. n = 0, следовательно, 20 = 1, и он образует один тип гамет (АвС). У организма с генотипом АаВВсс одна пара генов в гетерозиготном состоянии (Аа), т.е. n = 1, следовательно, 21 = 2, и он образует два типа гамет. У организма с генотипом АаВвСс три пары генов в гетерозиготном состоянии, т.е. n = 3, следовательно, 23 = 8, и он образует восемь типов гамет.
Дигибридное скрещивание
При решении задач на дигибридное скрещивание мне хотелось бы обратить внимание на два момента: а) использование буквенной символики и б) способах анализа F2-поколения.
Задача 9. Какое потомство получится при скрещивании чистопородного комолого (безрогого) черного быка с красными рогатыми коровами? Каким окажется следующее поколение, полученное от скрещивания этих гибридов между собой, если известно, что комолость доминирует над рогатостью, а черная масть – над красной, причем гены обоих признаков находятся в разных парах хромосом?
Условие задачи можно записать двумя способами.
1-й способ
А – ген комолостиа – ген рогатостиВ – ген черной мастив – ген красной мастиААBB – комолый черныйааbb – рогатые красныеF1 – ? F2 – ?
2-й способ
К – ген комолостик – ген рогатостиЧ – ген черной мастич – ген красной мастиККЧЧ – комолый черныйккчч – рогатые красныеF1 – ? F2 –?
На уроках я показываю учащимся оба способа использования буквенной символики при записи условия задачи. Они выбирают тот способ, который для них наиболее приемлем.Второй момент, на который хотелось бы обратить внимание, – способы анализа потомков в F2. Я знакомлю учащихся с тремя способами и право выбора способа решения оставляю за ними.
1-й способ потомства в F2. Составление решетки Пеннета.
2-й способ Позволяет наглядно представить, какие фенотипы будут в потомстве F2 при условии, что анализировать генотипы не следует.Потомство F2 условно изображают в виде квадрата. Так как комолость доминирует над рогатостью, мы сразу можем сказать (в соответствии с менделевским законом расщепления), что только одна четверть всего потомства будет рогатой, а остальные три четверти комолыми.
1080135topИзобразим это наглядно, отсекая нижнюю четверть квадрата горизонтальной линией (тогда меньший – нижний прямоугольник будет символизировать рогатую часть потомства). Независимо от этого, по признаку масти все потомство тоже должно распадаться на две неравные части: одна четверть – красные, а остальные три четверти – черные (ведь черный цвет доминирует).
Так как площадь квадрата принимается за единицу, площади его частей символизируют доли потомства с соответствующими признаками. Как видим, 9/16 всего потомства (3/4 х 3/4) – комолые черные,3/16 (3/4 х 1/4) – рогатые черные, еще 3/16 – комолые красные и, наконец, 1/16 потомства (1/4 х 1/4) – рогатые красные.
3-й способ
Согласно закону независимого наследования (третий закон Менделя) в потомстве F2 по каждой паре признаков происходит расщепление по фенотипу 3 : 1 и расщепление по генотипу 1 : 2 : 1. То есть по признаку наличия рогов можно записать (воспользуемся буквенной символикой 1-го способа записи условия):
Расщепление по фенотипу:
(3А_комолые :1аa)рогатые
Расщепление по генотипу:
(1АА : 2Аа : 1аa)
Аналогично, по признаку масти, можно записать.
Расщепление по фенотипу:
(3В_ черные : 1bb)красные
Расщепление по генотипу:
(1BB : 2Bb : 1bb)
Объединив оба признака, запишем выражение:
(3А_ + 1аa) хкомолые рогатые (3В_ + 1bb) =черные красные 9А_В_ + комолыечерные 3A_bb + комолыекрасные 3ааВ_ + рогатыечерные 1 аabbрогатыекрасные
В результате получили четыре фенотипические группы. Этот способ хорошо позволяет быстро написать не только фенотипы потомства F2, но также генотипы F2поколения:
(1АА + 2Аа + 1aa) х (1BB + 2Bb + 1bb) = 1AABB+ + 2AABb + 1AAbb + 2АаBB + 4АаBb + 2Aabb ++1aaBB + 2aaBb + 1aabb
Удобен этот способ и при других схемах скрещивания:
1) P: AaBb х aabbF1: (1Aa + 1aa) х (1Bb + 1bb) = 1АаBb : 1Aabb : 1aaBb : 1aabb
2) P: AaBb х aaBbF1: (1Aa + 1aa) х (3B_ + 1bb) = 3AaB_ + 1Aabb + 3AaB_ + 1aabb
3) Р: АаBBcc х AabbCc F1: (3A_+ 1aa) х (Bb) х (1Cc + 1cc) = 3A_BbCc + 3A_Bbcc + 1aaBbCc + 1aaBbcc
Доминантные гены известны.
Задача: Скрестили томаты нормального роста с красными плодами с томатами-карликами с красными плодами. В F1 все растения были нормального роста; 75% — с красными плодами и 25% — с желтыми. Определите генотипы родителей и потомков, если известно, что у томатов красный цвет плодов доминирует над желтым, а нормальный рост — над карликовостью.
Решение: Обозначим доминантные и рецессивные гены: А — нормальный рост, а — карликовость; В — красные плоды, в — желтые плоды.
Проанализируем наследование каждого признака по отдельности. В F1 все потомки имеют нормальный рост, т.е. расщепления по этому признаку не наблюдается, поэтому исходные формы — гомозиготны. По цвету плодов наблюдается расщепление 3:1, поэтому исходные формы гетерозиготны.
Р ААВв(нормальный рост, красные плоды) ааВв(карлики, красные плоды)
Г АВ, Ав аВ, ав
F1 АаВВ (нормальный рост, красные плоды)АаВв (нормальный рост, красные плоды)АаВв (нормальный рост, красные плоды)Аавв (нормальный рост, желтые плоды)
Доминантные гены неизвестны.
Задача: Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй — красные воронковидные цветки. В потомстве было получено 3/8 красных блюдцевидных, 3/8 красных воронковидных, 1/8 белых блюдцевидных и 1/8 белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.
Решение: Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют 6/8, с белыми цветами — 2/8, т.е. 3:1. Поэтому А — красный цвет, а — белый цвет, а родительские формы — гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).
По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина — воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что В — блюдцевидные цветки, в — воронковидные цветки.
Р АаВв(красные цветки, блюдцевидная форма) Аавв(красные цветки, воронковидная форма)
Г АВ, Ав, аВ, ав Ав, ав
F1 Гаметы АВ Ав аВ ав
Ав ААВв ААвв АаВв Аавв
ав АаВв Аавв ааВв аавв
3/8 А_В_ — красные блюдцевидные цветки,3/8 А_вв — красные воронковидные цветки,1/8 ааВв — белые блюдцевидные цветки,1/8 аавв — белые воронковидные цветки.
Решение задач на группы крови (система АВ0).
Задача: у матери вторая группа крови (она гетерозиготна), у отца — четвертая. Какие группы крови возможны у детей?
Решение:
Р IАIВ IАi0
Г IА, IВ IА, io
F1 IАIА, IАi0, IВi0, IАIВ(вероятность рождения ребенка со второй группой крови составляет 50%, с третьей —25%, с четвертой — 25%).
Решение задач на наследование признаков, сцепленных с полом.
Такие задачи вполне могут встретиться как в части А, так и в части С ЕГЭ.
Задача: носительница гемофилии вышла замуж за здорового мужчину. Какие могут родиться дети?
Решение:
Р ХНXh ХНY
Г ХН, Xh ХН, Y
F1 ХНХН девочка, здоровая (25%)ХНXh девочка, здоровая, носительница (25%)ХНY мальчик, здоровый (25%)XhY мальчик, больной гемофилией (25%)
Решение задач смешанного типа.
Задача: Мужчина с карими глазами и 3 группой крови женился на женщине с карими глазами и 1 группой крови. У них родился голубоглазый ребенок с 1 группой крови. Определите генотипы всех лиц, указанных в задаче.
Решение: Карий цвет глаз доминирует над голубым, поэтому А — карие глаза, а — голубые глаза. У ребенка голубые глаза, поэтому его отец и мать гетерозиготны по этому признаку. Третья группа крови может иметь генотип IВIВ или IВi0, первая — только i0i0. Поскольку у ребенка первая группа крови, следовательно, он получил ген i0 и от отца, и от матери, поэтому у его отца генотип IВi0.
Р АаIВi0 (отец) Ааi0i0 (мать)
Г АIB, Аi0, aIB, ai0 Аi0, ai0
F1 ааi0i0 (родился)
Задача: Мужчина дальтоник, правша (его мать была левшой) женат на женщине с нормальным зрением (ее отец и мать были полностью здоровы), левше. Какие могут родиться дети у этой пары?
Решение: У человека лучшее владение правой рукой доминирует над леворукостью, поэтому А — правша, а — левша. Генотип мужчины Аа (т.к. он получил ген а от матери-левши), а женщины — аа.
Мужчина-дальтоник имеет генотип XdY, а его жена — ХDХD, т.к. ее родители были полностью здоровы.
Р AaХdY aаХDXD
Г AХd, AY, aXd, aY аХD
F1 AaХDХd девочка-правша, здоровая, носительница (25%)aaХDXd девочка-левша, здоровая, носительница (25%)AaХDY мальчик-правша, здоровый (25%)aaXDY мальчик-левша, здоровый (25%)
Задачи для самостоятельного решения.
Определите число типов гамет у организма с генотипом АаВВСс.
Определите число типов гамет у организма с генотипом АаВвХдY.
Определите число типов гамет у организма с генотипом ааВВIВi0.
Скрестили высокие растения с низкими растениями. В F1 — все растения среднего размера. Какое будет F2?
Скрестили белого кролика с черным кроликом. В F1 все кролики черные. Какое будет F2?
Скрестили двух кроликов с серой шерстью. В F1 — 25% с черной шерстью, 50% — с серой и 25% с белой. Определите генотипы и объясните такое расщепление.
Скрестили черного безрогого быка с белой рогатой коровой. В F1 получили 25% черных безрогих, 25% черных рогатых,25% белых рогатых и 25% белых безрогих. Объясните это расщепление, если черный цвет и отсутствие рогов — доминантные признаки.
Скрестили дрозофил с красными глазами и нормальными крыльями с дрозофилами с белыми глазами и дефектными крыльями. В потомстве все мухи с красными глазами и дефектными крыльями. Какое будет потомство от скрещивания этих мух с обоими родителями?
Голубоглазый брюнет женился на кареглазой блондинке. Какие могут родиться дети, если оба родителя гетерозиготны?
Мужчина правша с положительным резус-фактором женился на женщине левше с отрицательным резусом. Какие могут родиться дети, если мужчина гетерозиготен только по второму признаку?
У матери и у отца 3 группа крови (оба родителя гетерозиготны). Какая группа крови возможна у детей?
У матери 1 группа крови, у ребенка — 3 группа. Какая группа крови невозможна для отца?
У отца первая группа крови, у матери — вторая. Какова вероятность рождения ребенка с первой группой крови?
Голубоглазая женщина с 3 группой крови (ее родители имели третью группу крови) вышла замуж за кареглазого мужчину со 2 группой крови (его отец имел голубые глаза и первую группу крови). Какие могут родиться дети?
Мужчина-гемофилик, правша (его мать была левшой) женился на женщине левше с нормальной кровью (ее отец и мать были здоровы). Какие могут родиться дети от этого брака?
Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
Мужчина с карими глазами и 3 группой крови женился на женщине с карими глазами и 3 группой крови. У них родился голубоглазый ребенок с 1 группой крови. Определите генотипы всех лиц, указанных в задаче.
Скрестили дыни с белыми овальными плодами с растениями, имевшими белые шаровидные плоды. В потомстве получены следующие растения: 3/8 с белыми овальными, 3/8 с белыми шаровидными, 1/8 с желтыми овальными и 1/8 с желтыми шаровидными плодами. Определите генотипы исходных растений и потомков, если у дыни белая окраска доминирует над жел той, овальная форма плода — над шаровидной.
Ответы
4 типа гамет.
8 типов гамет.
2 типа гамет.
1/4 высоких, 2/4 средних и 1/4 низких (неполное доминирование).
3/4 черных и 1/4 белых.
АА — черные, аа — белые, Аа — серые. Неполное доминирование.
Бык: АаВв, корова — аавв. Потомство: АаВв (черные безрогие), Аавв (черные рогатые), ааВв (белые рогатые), аавв (белые безрогие).
А — красные глаза, а — белые глаза; В — дефектные крылья, в — нормальные. Исходные формы — ААвв и ааВВ, потомство АаВв.Результаты скрещивания:а) АаВв х ААвв
F2 ААВв красные глаза, дефектные крылья
АаВв красные глаза, дефектные крылья
ААвв красные глаза, нормальные крылья
Аавв красные глаза, нормальные крылья
б) АаВв х ааВВ
F2 АаВВ красные глаза, дефектные крылья
АаВв красные глаза, дефектные крылья
ааВв белые глаза, дефектные крылья
ааВВ белые глаза, дефектные крылья
А — карие глаза, а — голубые; В — темные волосы, в — светлые. Отец ааВв, мать — Аавв.
Р ааВв Аавв
Г аВ, ав Ав, ав
F1 АаВв — карие глаза, темные волосыАавв — карие глаза, светлые волосыааВв — голубые глаза, темные волосыаавв — голубые глаза, светлые волосы
А — правша, а — левша; В — положительный резус, в — отрицательный. Отец ААВв, мать — аавв. Дети: 50% АаВв (правша, положительный резус) и 50% Аавв (правша, отрицательный резус).
Отец и мать — IВi0. У детей возможна третья группа крови (вероятность рождения — 75%) или первая группа крови (вероятность рождения — 25%).
Мать i0i0, ребенок IВi0; от матери он получил ген i0, а от отца — IВ. Для отца невозможны следующие группы крови: вторая IАIА, третья IВIВ, первая i0i0, четвертая IАIВ.
Ребенок с первой группой крови может родиться только в том случае, если его мать гетерозиготна. В этом случае вероятность рождения составляет 50%.
А — карие глаза, а — голубые. Женщина ааIВIВ, мужчина АаIАi0. Дети: АаIАIВ (карие глаза, четвертая группа), АаIВi0 (карие глаза, третья группа), ааIАIВ (голубые глаза, четвертая группа), ааIВi0 (голубые глаза, третья группа).
А — правша, а — левша. Мужчина АаXhY, женщина ааXHXH. Дети АаXHY (здоровый мальчик, правша), АаXHXh (здоровая девочка, носительница, правша), ааXHY (здоровый мальчик, левша), ааXHXh (здоровая девочка, носительница, левша).
А — красные плоды, а — белые; В — короткочерешковые, в — длинночерешковые.Родители: Аавв и ааВв. Потомство: АаВв (красные плоды, короткочерешковые), Аавв (красные плоды, длинночерешковые), ааВв (белые плоды, короткочерешковые), аавв (белые плоды, длинночерешковые).Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
А — карие глаза, а — голубые. Женщина АаIВI0, мужчина АаIВi0. Ребенок: ааI0I0
А — белая окраска, а — желтая; В — овальные плоды, в — круглые. Исходные растения: АаВв и Аавв. Потомство:А_Вв — 3/8 с белыми овальными плодами,А_вв — 3/8 с белы ми шаровидными плодами,ааВв — 1/8 с желтыми овальными плодами,аавв — 1/8 с желтыми шаровидными плодами.