МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
МУРМАНСКОЙ ОБЛАСТИ
Государственное автономное профессиональное образовательное учреждение Мурманской области
«МОНЧЕГОРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
(ГАПОУ МО «МонПК»)
ИНДИВИДУАЛЬНЫЙ ПРОЕКТпо дисциплине «Математика»
КОНИЧЕСКИЕ СЕЧЕНИЯ И ИХ ПРИМЕНЕНИЕ В ТЕХНИКЕ
Работу выполнил обучающийся
гр.МТ-15
Ершов Михаил
Руководитель: Кулдыркаева И.А.
преподаватель ГАПОУ МО
«МонПК»
Мончегорск, 2016
СОДЕРЖАНИЕ
TOC \o "1-3" \h \z \u ВВЕДЕНИЕ PAGEREF _Toc453750999 \h 31. ИСТОРИЯ ИЗУЧЕНИЯ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751000 \h 42. ПОНЯТИЕ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751001 \h 63. ВИДЫ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751002 \h 84. ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751003 \h 105. ПРИМЕНЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ В ТЕХНИКЕ. PAGEREF _Toc453751004 \h 13ЗАКЛЮЧЕНИЕ PAGEREF _Toc453751005 \h 14СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ PAGEREF _Toc453751006 \h 15
.
ВВЕДЕНИЕЦель работы: изучить конические сечения.
Задачи: научиться различать виды конических сечений, строить конические сечения, изучить их применение в технике.
Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба. Эту задачу связывают со следующей легендой.
Однажды на острове Делосе вспыхнула эпидемия чумы. Жители острова обратились к оракулу, который сказал, что для прекращения эпидемии надо увеличить вдвое золотой жертвенник, который имел форму куба и находился в храме Аполлона в Афинах. Островитяне изготовили новый жертвенник, ребра которого были вдвое больше ребер прежнего. Однако чума не прекратилась. Разгневанные жители услышали от оракула, что неверно поняли его предписание — удвоить было надо не ребра куба, а его объём.
Античные геометры изучали самые разные плоские кривые. Особого их внимания удостоились конические сечения: эллипс, парабола и гипербола. Всё это — линии пересечения прямого кругового конуса плоскостями, не проходящими через его вершину и наклонёнными под разными углами к образующей.
1. ИСТОРИЯ ИЗУЧЕНИЯ КОНИЧЕСКИХ СЕЧЕНИЙВ терминах геометрической алгебры, которой пользовались греческие математики, задача означала: по данному отрезку а найти такие отрезки х и y такие, что а : х = х : y = y : 2a. Тогда длина отрезка х будет равна .
Приведенную пропорцию можно рассматривать как систему уравнений:
left000
Но x2=ay и y2=2ax — это уравнения парабол. Поэтому для решения задачи следует отыскать точки их пересечения. Если же учесть, что из системы можно получить и уравнение гиперболы xy=2a2, то эту же задачу возможно решить нахождением точек пересечения параболы с гиперболой.
Для получения конических сечений Менехм пересекал конус - остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.
Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс (έλλείψίς ), что означает изъян, недостаток (угла конуса до прямого); гипербола (ύπέρβωλη) — преувеличение, перевес (угла конуса над прямым); парабола (παραβολη) — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность.
Леонардо да Винчи изучал различные траектории и виды сложного движения в природе и технике. В записных книжках художника и учёного есть немало набросков, сделанных на основе наблюдений. Полёт птиц, водоворот, распространение света и звука, круги на воде, движение мяча и снаряда… Во всех случаях его особо интересовала геометрия траекторий: углы падения и отражения, кривые и прочие линии, а также зависимость их формы от различных параметров. Неудивительно, что да Винчи предвосхитил результаты Тартальи. Леонардо да Винчи часто доводилось делать построения и измерения, для которых требовались специальные инструменты. Вот как описывает мастера за работой Дмитрий Мережковский в романе «Воскресшие боги»: «…Стоя на коленях, рядом с Венерой, вынул он циркуль, угломер, полукруглую медную дугу, наподобие тех, какие употреблялись в математических приборах, и, с выражением того же упорного, спокойного и проникновенного любопытства в холодных, светло-голубых глазах и тонких, плотно сжатых губах, начал мерить различные части прекрасного тела…»
В рукописях Леонардо да Винчи содержатся упоминания о самых разных чертёжных инструментах. Считается, что некоторые из них сконструировал он сам. Одно из его изобретений — устройство для рисования параболы. (Подобный инструмент, известный ещё грекам, описал арабский математик X—XI веков ас-Сиджизи.) Это был совершенный циркуль — с его помощью чертили все виды конических сечений: окружность, эллипс, параболу и гиперболу.
Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.2. ПОНЯТИЕ КОНИЧЕСКИХ СЕЧЕНИЙКонические сечения - это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев коническими сечениями являются эллипсы, гиперболы или параболы.
При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:
1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;
2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;
3) если секущая плоскость параллельна одной из образующих, то получается парабола.
Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.
Если плоскостью, проходящей через вершину, пересекаются обе полости, то в сечении получается пара пересекающихся прямых, рассматриваемая как частный случай гиперболы.Если вершина бесконечно удалена, то коническая поверхность обращается в цилиндрическую, и сечение ее плоскостью, параллельной образующим, дает пару параллельных прямых как частный случай параболы. Конические сечения выражаются уравнениями 2-го порядка, общий вид которых
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 и называются кривыми 2-го порядка.
3. ВИДЫ КОНИЧЕСКИХ СЕЧЕНИЙКонические сечения могут быть трёх типов:
1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.
2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола, целиком лежащая на одной полости.
3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.
В тех случаях, когда конические сечение имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:
a11x2+2a12xy + a22y2 = a33.
Дальнейшие исследования таких (называемых центральными) конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:
Ах2 + Ву2 = С, если за направления осей координат выбрать главные направления — направления главных осей (осей симметрии) конических сечений. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение определяет эллипс; если А и В разного знака, то — гиперболу.
Уравнение параболы привести к виду (Ах2 + Ву2 = С) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:
y2 = 2рх.
4. ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙИзучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.
Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 3), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большой и малыми осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.
Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рисунке 4, а, расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1, и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и, потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки F1 и F2.
Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Угловые коэффициенты этих прямых равны где – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F2F1; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.
Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.).
Расположим линейку так, чтобы ее край совпал с директрисой, и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, то есть PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.
5. ПРИМЕНЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ В ТЕХНИКЕ.Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала.
Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении
ЗАКЛЮЧЕНИЕКонические сечения - это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев коническими сечениями являются эллипсы, гиперболы или параболы.
Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВАлексеев. Теорема Абеля в задачах и решениях. 2001
Верещагин Н.К., Ашан. Лекции по математической логике и теории алгоритмов. 1999
Гельфанд И.М.. Лекции по линейной алгебре. 1998.
Прасолов В.В.. Геометрия Лобачевского 2004
Прасолов В.В.. Задачи по планиметрии 2001
Шейнман О.К.. Основы теории представлений. 2004