МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
МУРМАНСКОЙ ОБЛАСТИ
Государственное автономное профессиональное образовательное
Учреждение Мурманской области
«МОНЧЕГОРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
(ГАПОУ МО МонПК)
ИНДИВИДУАЛЬНЫЙ ПРОЕКТпо дисциплине «Математика»
ВЕЛИКИЕ МАТЕМАТИКИ И ИХ ОТКРЫТИЯ
Выполнил: Ткачев Василий,
обучающийся гр. МТ-15
Преподаватель Кулдыркаева И.А.
Мончегорск, 2016
Содержание
TOC \o "1-3" \h \z \u Введение PAGEREF _Toc453934800 \h 31. Фалес (ок. 625 – ок. 547 до н. э.) PAGEREF _Toc453934801 \h 42. Пифагор Самосский (570 -495 гг до н.э.) PAGEREF _Toc453934802 \h 63. Рене Декарт (1596-1650) PAGEREF _Toc453934803 \h 114. Блез Паскаль (1623-1662) PAGEREF _Toc453934804 \h 125. Софья Ковалевская (1850-1891) PAGEREF _Toc453934805 \h 136. Открытия в математике XX в. PAGEREF _Toc453934806 \h 14Список литературы PAGEREF _Toc453934807 \h 20
ВведениеАктуальность исследования. Математика появилась одновременно со стремлением человека изучить мир вокруг себя. Изначально она входила в состав философии - матери наук - и не была выделена как отдельная дисциплина наравне с той же астрономией, физикой. Однако с течением времени ситуация изменилась.
Знаний у людей накапливалось все больше, в итоге произошло разделение точных и естественных наук. После официального "рождения" каждая из них пошла своим путем, развиваясь, укрепляя фундамент теорией, подкрепленной практикой. Казалось бы, какая практика может быть у математики, самой абстрактной из наук? Этот предмет способен описать абсолютно все процессы, происходящие на нашей планете и за ее пределами, а знание природы явления позволяет делать выводы и строить прогнозы. Отсюда можно сделать вывод, что все науки связаны между собой, наиболее очевидна эта зависимость между математикой и физикой. Поэтому в большинстве случаев великие математики и физики составляют одну группу ученых.
Цель исследования: изучение биографии некоторых великих математиков и знакомство с самыми важными их открытиями.
Гипотеза: студенты колледжа мало знают о великих математиках и их открытиях.
Задачи исследования:
Ознакомиться с информацией о великих математиках, их биографии и открытиях в науке.
Составить презентацию, содержащую портреты математиков и некоторые факты из их жизни и деятельности.
Провести анкетирование студентов с целью выявления знаний о великих математиках, сделавших открытия в математике.
Сделать выводы о результатах анкетирования.
1. ФАЛЕС (ок. 625 – ок. 547 до н. э.)Фалес —древнегреческий философ.
Один из «семи мудрецов».
Умел предсказывать солнечные затмения; измерил высоту египетских пирамид по их тени; научился вычислять время солнцестояний и равноденствий, установил неравность промежутков между ними.
Рассказывают, что однажды ночью шел Фалес не глядя себе под ноги и рассматривал звездное небо. Он споткнулся и упал в яму. Люди стали над ним смеяться, а одна женщина сказала: - Что ж, мудрец, хочешь познать то, что на небесах, а не видишь даже того, что у тебя под ногами?
Фалес - основатель так называемой Ионийской школы — считается одним из первых древнегреческих геометров и философов. Он был родом из города Милета. В молодости занимался торговлей. Торговые дела заставили его посетить Египет, где он познакомился с египетской наукой. На родину Фалес вернулся уже в летах и в Милете организовал свою школу.
Фалес был крупнейшим астрономом. Именно он первый в истории науки, предсказал солнечное затмение 23 мая 585 года до новой эры.
Много внимания уделял Фалес геометрии. По свидетельству древнегреческого ученого Прокла (410—485), Фалесу принадлежит открытие следующих теорем:
1.Вертикальные углы, полученные при пересечении двух прямых линий, равны.
2.В равнобедренном треугольнике углы, лежащие при основании, равны.
3.Треугольник вполне определяется двумя углами и прилежащей к ним стороной. На основании этого предложения Фалес определил расстояние от корабля в море до берега.
4.Круг делится диаметром пополам.
5.Угол, вписанный в полуокружность, прямой.
6.Фалесу принадлежат способы нахождения высоты пирамиды и вообще различных предметов по их тени.
Вполне вероятно, что это измерение было произведено в тот момент дня, когда длина тени вертикального шеста равнялась его длине. Возможно также, что измерение было произведено на основании подобия треугольников.
Фалес был атеистом. Он отвергал божественное происхождение Вселенной. Сущностью всех вещей считал воду (жидкообразное состояние материи). Выступал против распространенного в то время обожествления небесных светил (Солнца, Луны, Звезд), считал их материальными телами, наполненными огнем.
Вот его отрывочные высказывания:
— Вода есть начало всего; все из нее происходит и в нее превращается.
— Мир есть самая обширная из вещей, существующих в пространстве.
— Нет пустоты.
— Все изменяется и каждое соединение вещей только мгновенно.
— Вещество постоянно разделяется, но это разделение имеет свой предел.
— Звезды имеют земную природу, но воспаленную.
— Луна освещается Солнцем.
Фалес перестал философствовать только со смертью. Смерть Фалеса наступила в престарелом возрасте внезапно, когда он наблюдал олимпийские игры. По-видимому, он умер от солнечного удара. Некоторые утверждают, что он был задушен толпою, возвращавшейся с олимпийских игр.
Тело его было погребено в поле. На гробнице высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».
2. Пифагор Самосский (570 -495 гг до н.э.)Это был в своём роде Эйнштейн IV века до н. э. При жизни его считали полубогом, магом, чудотворцем, абсолютным мудрецом. До сих пор он остается одним из самых загадочных великих людей в истории.
В научных достижениях Пифагор прославился своей теоремой : «квадрат гипотенузы треугольника равняется сумме квадратов катетов», а также учениями о числах.
О жизни Пифагора до нас дошли очень скудные данные. По отрывочным сведениям некоторых историков известно, что Пифагор годился на острове Самосе. В молодости путешествовал по Египту, жил в Вавилоне, где имел возможность в течение 12 лет изучать астрономию и астрологию у халдейских жрецов. После Вавилона, побыв некоторое время в своем отечестве, переселился в Южную Италию, а потом в Сицилию и организовал там пифагорейскую школу, которая внесла ценный вклад в развитие математики и астрономии.
Пифагор и его ученики много потрудились над тем, чтобы придать геометрии научный характер. Кроме знаменитой теоремы, носящей его имя, Пифагору приписывается еще ряд замечательных открытий, в том числе:
1.Теорема о сумме внутренних углов треугольника.
2.Задача о покрытии, т. е. деление плоскости на правильные многоугольники (равносторонние треугольники, квадраты и правильные шестиугольники).
3.Геометрические способы решения квадратных уравнений.
4.Правила решать задачу: по данным двум фигурам построить третью, которая была бы равна одной из данных и подобна другой.
Наибольшую славу Пифагору принесла открытая им «теорема Пифагора», которая и до настоящего времени считается одной из важных теорем геометрии, используемых на каждом шагу при изучении геометрических вопросов. Частные случаи этой теоремы были известны некоторым древним народам еще до Пифагора. Например, в своей строительной практике египтяне пользовались так называемым «египетским треугольником» со сторонами 3, 4 и 5. Египтяне знали, что указанный треугольник является прямоугольным и для него выполняется соотношение: 32 + 42 = 52, т. е. как раз то, что утверждает теорема Пифагора.
Частные случаи этой теоремы были известны также китайцам и индийцам. Трудно указать время, когда эти народы впервые стали пользоваться «пифагоровым» соотношением. Но достоверно, что теоремой Пифагора китайцы и индийцы пользовались издавна. В древнем Китае теорему Пифагора стали применять около 2200 лет до новой эры.
В знаменитом трактате «Математика в девяти книгах», составление которого относится к началу новой эры, теорема о соотношении сторон в прямоугольном треугольнике использовалась подвидом правила «Гоу-гу». Согласно этому правилу, древние китайцы по известной гипотенузе и одному катету находили другой, неизвестный катет, а также гипотенузу, если были известны оба катета. Термины «гоу» и «гу» обозначают катеты прямоугольного треугольника, причем «гоу» — горизонтальный, обычно меньший катет, а «гу» — вертикальный и обычно больший катет. В буквальном переводе «гоу» означает крюк, «гу» — ребро, связка.
Индийским ученым теорема Пифагора стала известна не позднее VIII века до новой эры. В самом старом памятнике индийской геометрии «Сулва-сутрах» (VII до н. э.) эта теорема формулировалась так: «Веревка, проведенная наискось в продольном квадрате [прямоугольнике] образует то же, что образует вместе каждая из мер: продольных и поперечных». Эта же теорема в виде краткого правила излагалась еще и так: «То, что образуется на двух сторонах, равно тому, что образуется по диагонали».
Доказательство самого Пифагора своей знаменитой теоремы до нас не дошло. Историки полагают, что первоначальное доказательство теоремы Пифагора относилось к частному случаю, т. е. к рассмотрению равнобедренного прямоугольного треугольника, как это делали индийцы, исходя непосредственно из чертежа.
Открытие теоремы Пифагора связано с разного рода легендами. Например, одна из легенд говорит, что Пифагор, обрадованный своим открытием, в благодарность принес богам в жертву 100 быков (гекатомбу). На эту тему немецкий поэт Адельберт Шамиссо написал стихотворение, которое в переводе Натальи Тереховой и приводится ниже:
Во мгле веков пред нашим взором
Блеснула истина. Она,
Как теорема Пифагора,
До наших дней еще верна.
Найдя разгадку, мудрый старец
Был благодарен небесам;
Он сто быков велел зажарить
И в жертву принести богам.
С тех пор быки тревожно дышат,—
Они, кляня дары богов,
О новой истине услышав,
Ужасный поднимают рев.
Их старца имя потрясает,
Их истины лучи слепят;
И, новой жертвы ожидая,
Быки, зажмурившись дрожат.
Однако это предание о 100 быках, якобы принесенных Пифагором в жертву, мало соответствует действительности, так как устав пифагорейцев запрещал им всякое пролитие крови. Еще Марк Тулий Цицерон (106—43 до н. э.), выдающийся оратор, писатель и политический деятель древнего мира, сомневался в правдивости рассказанной выше легенды, а последователи Пифагора позднейших веков (неопифагорейцы) живых быков заменили «быками», сделанными из муки.
Пифагору приписываются «Золотые стихи» и «Символы». Ниже приводятся некоторые изречения из «Золотых стихов»:
— Делай лишь то, что впоследствии не огорчит тебя и не принудит раскаиваться.
— Не делай никогда того, чего ты не знаешь. Но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь.
— Не пренебрегай здоровьем своего тела. Доставляй ему вовремя пищу и питье, и упражнения, в которых оно нуждается.
— Приучайся жить просто и без роскоши.
— Не закрывай глаз, когда хочется спать, не разобравши всех своих поступков в прошлый день.
Теперь в качестве примера приводим несколько «Символов» Пифагора, представляющих из себя пословицы, предлагавшиеся Пифагором своим близким друзьям:
— Не проходите мимо весов (т. е. не нарушайте справедливости).
— Не садитесь на подушку (т. е. не успокаивайтесь на достигнутом).
— Не грызите своего сердца (т. е. не предавайтесь меланхолии).
— Не поправляйте огня мечом (т. е. не раздражайте тех, кто и без того во гневе).
— Не принимайте под свою кровлю ласточек (т е говорунов и легкомысленных людей).
«В школе Пифагора процветала числовая мистика. Приняв количественные соотношения за сущность всех вещей и оторвав их от материальной действительности, пифагорейцы пришли к идеализму. Пифагор учил, что мерой всех вещей являются числа и соотношения между ними. По мнению Пифагора, даже такие далеко не математические понятия, как «дружба», «справедливость», «радость» и т. д., находят объяснение в числовых зависимостях, для которых они являются только образами или копиями. Числам явно приписывались мистические свойства. Так, одни числа несут добро, другие — зло, третьи — успех и удачу и т. д.
По Пифагору и его последователям, душа — тоже число, она бессмертна и переселяется от одного человека к другому. Имеется предание, согласно которому будто бы сам Пифагор рассказывал о себе, что он хорошо помнит, в ком жила его собственная душа в последние 207 лет.
Числовая мистика Пифагора и его учеников нанесла большой ущерб дальнейшему развитию математики как науки. Из мистических соображений Пифагор засекретил некоторые свои открытия (например, открытие иррациональных чисел) и тем самым тормозил расцвет науки и задерживал ее поступательное движение.
Современная церковь всячески поощряет числовую мистику. Например, в библии число 666 является числом зверя, число 12 несет счастье, а число 13 —«чертова дюжина» — одно только несчастье.
Ясно, что числовые суеверия, поддерживаемые всеми религиями, не имеют под собой каких-нибудь разумных оснований. Они, как и все другие суеверия, приносят только вред, подрывая веру человека в свои силы и возможности.
Заслугой Пифагора и его последователей является внедрение математики в естествознание Пифагор считал, что Земля имеет форму шара и представляет собой центр Вселенной, причем Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.
Пифагореец Филолай (470—399 до н. э.) полагал, что Земля движется по сфере вокруг «центрального огня», вокруг него же по своим сферам движутся Солнце и планеты
Учение пифагорейцев о движении Земли Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника «ложным пифагорейским учением».
3. Рене Декарт (1596-1650)Французский математик и философ. Математические исследования Декарта тесно связаны с его работами по философии и физике. В "Геометрии" Декарт впервые ввёл понятия переменной величины и функции.
Заложил основы аналитической геометрии, дал понятие импульса силы, вывел закон сохранения количества движения, создал метод координат (декартовы координаты). Известны кривые овалы Декарта. В область изучения геометрии Декарта включил "геометрические" линии (названные позднее Г. Лейбницем алгебраическими), которые можно описать движениями шарнирных механизмов.
4. Блез Паскаль (1623-1662)Французский математик, физик, философ, писатель. Родился в семье юриста, занимающегося математикой. Рано проявил математические способности. Имеет трактат "Опыт о конических сечениях". Сконструировал суммирующую машину.
Имеет работы по теории чисел, арифметике, теории вероятностей. Нашёл общий алгоритм для нахождения признаков делимости чисел. Имеет трактат об «Арифметическом треугольнике». Установил принцип действия жидкостей и газов. Написал «Письма к провинциалу» - шедевр французской сатирической прозы.
5. Софья Ковалевская (1850-1891)В доме Софьи шёл ремонт, и на детскую не хватило обоев. Комната простояла несколько лет, оклеенная лишь бумагой (лекциями по высшей математике). Соня подолгу стояла возле стен, пытаясь прочесть текст. А через несколько лет, когда Соня брала первые уроки высшей математики, учитель удивился, как быстро она усвоила сложнейшие понятия.
Наиболее важные исследования С.В. Ковалевской относятся к теории вращения твёрдого тела. Она открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки.
6. Открытия в математике XX в.В отличие от других наук, математика, как представительница чистого разума, развивается поступательно, вне зависимости от увлечений человечества на том или ином историческом промежутке времени, от революций и катаклизмов общества. Иногда математики любят ставить проблемные вопросы, на решение которых уходят столетия.
Теорема есть некое математическое утверждение, правильность которого требует построения логической цепочки доказательств, основанной на использовании законов формальной логики с привлечением аксиом – истин, принимаемых как само собой разумеющееся, очевидное и доказательств не требующее. Особого интереса заслуживают теоремы, доказательства которых вызывают сомнение или отсутствуют. Такое бывает у непререкаемых авторитетов. Ландау, например, на лекции по теоретической физике в спешке мог пропустить звено логической цепочки «как очевидное», тогда как другим теоретикам «очевидное» могло не даваться многие годы, вызывая в голове ступор.
Юрист по профессии и математик по увлечению (в наше время у юристов подобные увлечения – нонсенс) Пьер Ферма (1601-1665) в письме другу, написанном в 1636 году, выдвинул любопытное утверждение из теории чисел, впоследствии получившее название Великой теоремы Ферма. На полях он оставил следующее сопровождение: «Я располагаю изумительным доказательством, но оно слишком велико для размещения на полях». То есть великий ученый прямо заявил, что доказал свою теорему.
Потомкам пришлось 360 лет разбираться с тем, действительно ли Ферма доказал, или просто соврал. Благо еще удалось бы показать, что теорема неверна, найти один единственный опровергающий пример, но, несмотря на все усилия, сделать этого не удавалось. И формулировка то проще некуда: уравнение Xn+Yn=Zn не имеет целочисленных решений при n>2. При n=2 эта теорема (так называемая теорема Пифагора, предложенная ненавистником бобов более двух тысячелетий тому назад) имеет бесконечное множество решений.
История доказательств Великой теоремы трагична и полна драматизма. Складывается впечатление, будто ехидный Ферма бросил вызов потомкам (открыл ящик Пандоры), а когда речь идет о деле чести, можно представить, как болезненно переживали математики-профессионалы подобную «легкомысленность» в последующие столетия. Можно без преувеличения сказать, что у математиков начался массовый психоз: «почему я не могу доказать то, что доказал Ферма черт знает в какие примитивные времена?» Увлечение превращалось в цель и смысл жизни. Некоторые в буквальном смысле свихнулись на этом.
Перед теоремой пасовали даже такие гиганты мысли, как Гаусс, Леонард Эйлер, доказавший теорему для n=3 и 4, Лежандр (n=5), Дирихле (n=6)…
После того, как в 1907 году состоятельный немецкий любитель математики, наподобие Нобеля, завещал 100 тысяч марок тому, кто докажет Великую теорему, и вовсе начался массовый ажиотаж. Выскочек без образования презрительно называли ферматистами, а говорить о теореме Ферма в высшем математическом свете стало признаком дурного тона, вроде как нецензурно выругаться. Однако в тиши кабинетов и великие прикладывались к «запретному зелью». Мало-помалу появились доказательства для степени n<100, n<619… все невероятно сложные и длинные.
В эти смутные времена в Японии жил математик Ютака Танияма. Когда ему исполнилось 28 лет, он выдвинул гипотезу (впоследствии получившую название гипотезы Танияма-Шимура-Вейла), что каждой эллиптической кривой соответствует определенная модулярная форма. Гипотеза, казалось, не имеет отношения к теории чисел, она соединяла понятия двумерных и четырехмерных форм: уравнения двух абсолютно разных математических объектов можно разложить в одинаковые математические ряды.
После выступления Танияма на международном математическом конгрессе, состоявшемся в Токио в1955 году, и демонстрации соответствия нескольких эллиптических кривых модулярным формам, многие увидели в этом не более чем забавное совпадение. Через три года Танияма покончил жизнь самоубийством, и о гипотезе забыли.
А в 1985 году произошла революция – немец Герхард Фрей опубликовал следующее заявление: «Если доказать гипотезу Танияма, тем самым будет доказана и Великая теорема Ферма». Заявление Фрея через год удалось строго доказать профессору калифорнийского университета Риббету. Поскольку, однако, у математиков уже сложилась аллергия на теорему Ферма, возиться с доказательством гипотезы Танияма, из которой следует верность теоремы Ферма, из соображений сложности не хотелось. Чем гипотеза Танияма должна быть проще теоремы Ферма?
Поток гениев, однако, не остановить. Как настоящий ученый, английский профессор математики Эндрю Уайлс, зная историю, не обольщался результативностью своих изысканий в области доказательства гипотезы Танияма. Позже он признавался, что работу над Великой теоремой скрывал даже от жены. И все-таки 23 июня 1993 года он набрался храбрости, надел на голову петлю и на математической конференции по теории чисел в Кембридже громогласно объявил о достижении цели.
Такой наглости никто из присутствующих не ожидал от не очень известного математика. Тотчас подключилась пресса. Состоялась публичное доказательство теоремы Танияма, а следовательно и теоремы Ферма. Ошибок никто не обнаружил. Следовательно, масштабное событие произошло: Великая теорема доказана. Но, по закону подлости, за два дня до публикации, хитрый коллега Уайлса Кац, заметил, что «один фрагмент рассуждений опирается на систему Эйлера, на самом деле таковой не являясь». Это была катастрофа. Бедный Уайлс понял, что проиграл, и ему оставалось либо повеситься, чтобы не остаться навсегда осмеянным потомками, либо бросить занятия математикой, сменить имя, сделать пластическую операцию и уехать на край земли, где математические проблемы людям, как говорится, по барабану. Уайлс впал в депрессию: как смотреть коллегам в глаза? Он отказывался от пищи и здоровье его ухудшалось.
Но в сентябре 1994 года, размышляя над узким местом доказательства Уайлса, его коллега Тейлор из Оксфорда неожиданно обнаружил, что если заменить систему Эйлера на теорию Ивасава, то все сойдется. Около года математики изучали непротиворечивость доказательства Уайлса с замечанием Тейлора, и летом 1995 года в ведущем математическом журнале «Анналы математики» было опубликовано доказательство гипотезы Танияма, занявшее целый номер.
Итак, в 1995 году мир признал, что Эндрю Уайлс доказал Великую теорему Ферма.
Уайлс оказался тем счастливчиком, которому удалось нанести последний нокаутирующий удар по проблеме. Но не следует забывать, что за ним стоят все великие математики предыдущих столетий. Если кому-то покажется незначительность этого события, достаточно вспомнить, что математика стоит в авангарде всех научных достижений, а решение казалось бы «легкомысленной задачи» порождает целые направления в развитии математики. Леонардо да Винчи однажды заметил, что «наукой можно назвать только математически подтвержденное учение».
Так все-таки доказал Ферма свою теорему, или это была гипотеза? Возможно, ему показалось, что доказал, но на самом деле ошибся. Сознательно соврал, упоенный красотой открытия? И этого исключить нельзя. Все же большинство математиков склоняются к мысли, что во времена Ферма нельзя было придумать альтернативное доказательство, как нельзя в эпоху дилижансов и рыцарских турниров изобрести атомную бомбу.
Ферма не доказал, но гениально угадал!
С точки зрения морали, из этой очень поучительной истории следует хотя бы тот маленький вывод, что, внимая пламенной риторике ведущих авторитетов в своей области, каждый имеет право усомниться в справедливости сладкоречивых слов говорящего.
ЗАКЛЮЧЕНИЕ
Жизнь великих учёных так тесно переплелась с наукой, что уже невозможно представить математику без Пифагора, а Лобачевского – без математики. Но всё же мы надеемся, что факты из их биографий составят более полные образы учёных, которым ничто человеческое не чуждо.
Математика – уникальная наука. Она способствует выработке адекватного представления и понимания знания. “Ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства” – писал Леонардо да Винчи.
В настоящее время исследования ученых убедительно показали, что возможности людей, которых обычно называют талантливыми, гениальными – не аномалия, а норма. Задача заключается лишь в том, чтобы раскрепостить мышление человека, повысить коэффициент его полезного действия, наконец, использовать те богатейшие возможности, которые дала ему природа, и о существовании которых многие подчас и не подозревают. Поэтому особо остро в последние годы стал вопрос о формировании общих приемов познавательной деятельности.
Роль и значение математики в обществе увеличивается, как и число математиков. Примерная оценка числа математиков в США на 2004 г.– свыше 130 тыс. человек. Многие развитые страны стремятся к увеличению числа математиков и специалистов, владеющих математикой профессионально, в том числе, - за счёт эмиграционных льгот и послаблений. Жаль, что этого пока нет в России, потому что «утечка умов» за границу делает нашу страну беднее как в финансовом, так и в моральном плане.
Список литературы1.Денисов А.П. Леонтий Филиппович Магницкий. - М., 1967.
2.Дэпман И.Я. Рассказы о решении задач. - Л.:Детгиз, 1964.
3.История отечественной математики. - Т.1. - Киев, 1966.
4.Минковский В.Л. За страницами учебника математики. - М.: Просвещение, 1966.
5.Нагибин Ф.Ф. Математическая шкатулка. - М.:Просвещение, 1964.
6.Олехник С.Н., Нестеренко Ю.В., Потапов М.К. Старинные занимательные задачи. - М.:"Вита-Пресс", 1994.
7.Рыбников К.А. История математики. - Т.1.- М.,1963.
8.Энциклопедия «Занимательная математика»