Метод Пирсона при решении задач на смеси и сплавы


Чтобы посмотреть презентацию с оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов:

Метод Пирсонапри решении задач на смеси и сплавыН.М. Чичероваучитель математикиМБ ОУ Газопроводская СОШс. Починки Нижегородская обл. Содержание:ТеорияПрактика Теория:Синонимы: процентное содержание вещества; концентрация вещества; массовая доля вещества Готовим раствор определенной концентрации. Имеется 2 раствора с более высокой и менее высокой концентрацией, чем нужно. Обозначим массу 1-го раствора m 1, а 2-го m 2, тогда при смешивании масса смеси будет равна сумме этих масс.Массовая доля растворённого вещества в 1-м растворе – ω 1, во 2-м – ω 2, а в их смеси – ω 3. Тогда общая масса растворённого вещества в смеси будет складываться из масс растворённого вещества в исходных растворах: m 1 ω 1 + m 2 ω 2 = ω 3(m 1 + m 2), m 1(ω 1 – ω 3) = m 2(ω 3 – ω 2) Отношение массы 1-го раствора к массе 2-го раствора это отношение разности массовых долей растворённого вещ-ва в смеси и в 2-м растворе к разности величин в 1-м растворе и в смеси. При решении задач на растворы с разными концентрациями чаще всего применяют квадрат Пирсона. При расчётах записывают одну над другой массовые доли растворённого вещества в исходных растворах, справа между ними – его массовую долю в растворе, который нужно приготовить, и вычитают по диагонали из большего меньшее значение. Разности их вычитаний показывают массовые доли для первого и второго растворов, необходимые для приготовления нужного раствора. ω1 ω3 — ω2 ω3 ω2 ω1 — ω3 Практика:6 задач с решениями5 задач с ответами7 задач для самостоятельного решения Задача 1. Морская вода содержит 5% соли (по массе). Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составила 1,5%?Решение:5%0%1,5%1,5%3,5%30 кгх кг
Задача 2. Из сосуда, доверху наполненного 97% раствором кислоты, отлили 2 литра жидкости и долили 2 литра 45% раствора этой же кислоты. После этого в сосуде получился 81% раствор кислоты. Сколько литров раствора вмещает сосуд?Решение: 97% 81% 45%16%36%(х-2) л2 л
Задача 3. Смешали 500 г 10%-го раствора соли и 400 г 55%-го раствора соли. Определите концентрацию соли в смеси.Решение: (х-10)%(55-х)%500 г400 г55%10%х%Ответ: концентрация соли в смеси двух исходных растворов 30%.
Задача 4. Имеются два слитка, содержащие медь. Масса второго слитка на 3 кг больше, чем масса первого слитка. Процентное содержание меди в первом слитке – 10%, во втором – 40%. После сплавления этих двух слитков, получился слиток, процентное содержание меди в котором 30%. Определить массу полученного слитка.Решение:40%10%30%10%20%(х+3) кгх кг
Задача 5. Сплавили 300 г сплава олова и меди, содержащего 60% олова, и 900г сплава олова и меди, содержащего 80% олова. Сколько процентов олова в получившемся сплаве?Решение:60%80%х%(х-60)%(80-х)%300 г900 г
Задача 6. В сосуд, содержащий 5 литров 12-процентного водногораствора некоторого вещества, добавили 7 литров воды. Сколькопроцентов составляет концентрация получившегося раствора?Решение: х%12%0%х%(12–х)%5 л7 лОтвет: 5%.

Задача 1. Смешали некоторое количество 15-процентного растворанекоторого вещества с таким же количеством 19-процентного раство-ра этого вещества. Сколько процентов составляет концентрацияполучившегося раствора? Ответ: 17%.Задача 2. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?Ответ: 21%. Задача 3. Имеется два сплава. Первый содержит 10% никеля,второй — 30% никеля. Из этих двух сплавов получили третийсплав массой 200 кг, содержащий 25% никеля. На сколькокилограммов масса первого сплава меньше массы второго?Ответ: на 100 кг. Задача 4. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ: 9 кг.Задача 5. По дороге ТУДА Винни Пух нашел дупло с мёдом. По его ощущениям этот мёд, к сожалению, только лишь на одну пятую часть правильный (остальные четыре пятые – неправильные). В дупле же, найденном по дороге ОБРАТНО, мёд на 60% правильный. Сколько килограммов мёда нужно взять из первого и второго(10 – Х) кг дупла, чтобы в общей сложности получить 10 кг меда, содержащего 32% правильного?Ответ: 7 килограммов из первого и 3 килограмма из второго дупла. В 5 кг сплава олова и цинка содержится 80% цинка. Сколько кг олова надо добавить к этому сплаву, чтобы процентное содержание цинка стало 40%? Имеется 4 литра 20%-го раствора спирта. Сколько воды него нужно, чтобы получился 10%-й раствор спирта?Имелось два сплава серебра. Процент содержания серебра в первом сплаве был на 25% выше, чем во втором. Когда их сплавили вместе, то получили сплав, содержащий 30% серебра. Найдите вес сплавов, если в первом сплаве было 4кг, а во- втором 8 кг.Имеется два раствора некоторого вещества. Один 15%-ный, а второй 65%-ный Сколько нужно взять литров каждого раствора, чтобы получить 200л раствора, содержание вещества в котором равно 30%?В какой пропорции нужно смешать 10-ный и 15-ный растворы аммиачной селитры, чтобы приготовить из них 15-ный раствор селитры.Если к сплаву меди и цинка добавить 20г меди, то содержание меди в сплаве станет равным 70%. Если же к первоначальному сплав добавить 70г сплава, содержащего 40% меди, то содержание меди станет равным 52%. Найдите первоначальный вес сплава.7) Когда к раствору серной кислоты добавить 100г воды, то его концентрация уменьшилась на 40%. Если бы к начальному раствору добавили 100г серной кислоты, то его концентрация увеличилась бы на 10%. Какова у раствора концентрация кислоты? http://im26.gulfup.com/rftR6.pnghttp://www.need4soft.ru/uploads/taginator/Jun-2013/fon-dlya-prezentacii.jpg

Приложенные файлы

  • pptx metod
    Размер файла: 529 kB Загрузок: 8