История развития геометрии и её применение научно-исследовательская работа по математике

История развития геометрии и её применение
научно-исследовательская работа
по математике


Даутова Галина, 7класс
Научный руководитель
Мухаметзянова Г.Р. Учитель математики
высшей категории МАОУ «СОШ №12 с УИОП»
Г.Стерлитамак, Республика Башкортостан, 2015 год

Введение
В этом году я начала изучать предмет геометрии. Меня заинтересовала история возникновения геометрии и ее применение в жизни. Геометрия возникла очень давно, это одна из самых древних наук. В ее развитии важную роль играли эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.
Целью моей работы является изучение развития геометрии и её применение в жизни.
Поэтому я поставила перед собой следующие задачи:
Рассмотреть историю возникновения геометрии.
Дать определение геометрии.
Изучить этапы становления «школьной» геометрии.
Рассмотреть применение геометрии в практической жизни.
При написании этой работы я использовала следующие методы исследования:
Поиск информации из книг и глобальных компьютерных сетей (интернет).
Наблюдение опыта работы учителей математики.
Опрос.
Метод рассуждений.
Метод демонстрации.

История возникновения геометрии.
Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, которые имеют форму шара. А добывая каменную соль, люди наталкивались на кристаллы, имевшие форму куба. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими формами.
Уже 200 тысяч лет тому назад были изготовлены орудия сравнительно правильной геометрической формы, а потом люди научились шлифовать их. Специальных названий для геометрических фигур, конечно, не было. Говорили: «такой же, как кокосовый орех» или «такой же, как соль» и т.д.
А когда люди стали строить дома из дерева, пришлось глубже разобраться в том, какую форму следует придавать стенам и крыше, какой формы должны быть бревна. Сами того не зная, люди все время занимались геометрией: женщины, изготавливая одежду, охотники, изготавливая наконечники для копий или бумеранги сложной формы, рыболовы, делая такие крючки из кости, чтобы рыба с них не срывалась.

Когда стали строить здания из камня, пришлось перетаскивать тяжелые каменные глыбы. Для этого применялись катки. И заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки.
Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки и с их помощью перетаскивать грузы. Так появилось первое колесо.
Но не только в процессе работы знакомились люди с геометрическим фигурами.
Издавна они любили украшать себя, свою одежду, свое жилище (бусинки, браслеты, кольца, украшения из драгоценных камней и металлов, роспись дворцов).
Для того, чтобы взимать налоги с земли, необходимо было знать их площадь. Гончару необходимо было знать, какую форму следует придать сосуду, чтобы в него входило то или иное количество жидкости. Астрономы, наблюдавшие за небом и дававшие на основе этих наблюдений указания, когда начинать полевые работы, должны были научиться определять положение звезд на небе. Для этого понадобилось измерять углы.
Так практическая деятельность людей привела к дальнейшему углублению знаний о формах фигур, развитию геометрии. Люди стали учиться измерять и площади, и объемы, и длины и т.д.
Древние египтяне были замечательными инженерами. До сих пор не могут до конца разгадать загадки огромных гробниц Египетских царей – Фараонов.

Пирамиды – а они построены более 5 тыс. лет назад – состоят из каменных блоков весом 15 тонн, и эти «кирпичики» так подогнаны друг к другу, что не возможно между ними протиснуть и почтовую открытку. А при строительстве использовали лишь простейшие механизмы – рычаги и катки.
«Все боится времени, но само время боится пирамид».
В Вавилоне при раскопках ученые обнаружили остатки каменных стен, высотой в несколько десятков метров, а высота Вавилонской башни достигает 82 метра.
Без математических знаний все эти сооружения невозможно было бы построить. И все же математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой, поэтому правила надо было зазубривать, не понимая, почему надо применять то, а не другое.
Почти все великие ученые древности и средних веков были выдающимися геометрами. Девиз древней школы был: "Не знающие геометрии не допускаются!"
«Геометрия была открыта египтянами и возникла при измерении земли. Нет ничего удивительного в том, что эта наука как и другие, возникла из потребностей человека. Всякое возникающее знание из несовершенного состояния переходит в совершенное. Зарождаясь путем чувственного восприятия, оно постепенно становится предметом рассмотрения и наконец, делается достоянием разума». Эти замечательные слова приписывают греческому ученому Евдему Родосскому, жившему в IV в.до н.э.
В «Энциклопедическом словаре юного математика» написано: «Геометрия – одна из наиболее древних математических наук. Первые геометрические факты мы находим в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.), а также в других источниках».
И наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах «Начала». Евклид жил в Александрии, был современником царя Птоломея I и учеником Платона. Славу Евклиду создал его собирательный труд «Начала». Произведение состояло из 13 томов, описанная в этих книгах геометрия получила название Евклидова. Величайшая заслуга его состояла в том, что он подвел итог построению геометрии придал ее изложению столь совершенную форму, что на 2 тысячи лет «Начала» стали основным руководством по геометрии. В течение многих веков «Начала» были единственной учебной книгой, по которым молодежь изучала геометрию. Были и другие. Но лучшими признавались «Начала» Евклида. И даже сейчас, в наше время, учебники написаны под большим влиянием «Начал» Евклида.

Конечно, геометрия не может быть создана одним ученым. В работе Евклид опирался на труды десятков предшественников и дополнил работу своими открытиями и изысканиями. Сотни раз книги были переписаны от руки, а когда изобрели книгопечатание, то она много раз переиздавалась на языках всех народов и стала одной из самых распространенных книг в мире.


В одной легенде говорится, что однажды египетский царь Птолемей I спросил древнегреческого математика, нет ли более короткого пути для понимания геометрии, чем тот, который описан в его знаменитом труде, содержащемся в 13 книгах.


Ученый гордо ответил: " В геометрии нет царской дороги".
Определение геометрии.
Геометрия (греческое, от ge земля и metrein измерять) наука о пространстве, точнее наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический термин широко употребляется современными геометрами. Оно уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.
В геометрии Лобачевского сумма углов любого треугольника меньше 180 . Два перпендикуляра к одной прямой все дальше отходят друг от друга. И еще много фактов есть в этой геометрии, не похожих на те, о которых говорится в школьных учебниках. И все же никаких противоречий в этой геометрии нет. А вскоре математики открыли много других геометрий. И все они нужны. А евклидова геометрия, которую изучают в школе, самая простая из всех и в то же время самая нужная.
Новое время.
За последние 300 лет доказательная геометрия была существенно расширена, а по своим методам и степени общности результатов она стала заметно отличаться от элементарной геометрии (т.е. геометрии, изложенной в Началах). Французский математик Ж.Дезарг (1593–1662) в связи с развитием учения о перспективе занялся исследованием свойств геометрических фигур в зависимости от их проекций. Тем самым он заложил основу проективной геометрии, которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. В 19 в. это направление получило существенное развитие. Проективная геометрия, конические сечения и новая геометрия треугольников и окружностей составили содержание современной т.н. чистой геометрии.
Тесно связанная с проективной, начертательная геометрия была введена французским математиком [ Cкачайте файл, чтобы посмотреть ссылку ] (1746–1818). Эта новая область геометрии была связана с представлением изображений геометрических фигур на плоскости и определением геометрическими средствами расстояний, углов и линий пересечения. Начертательная геометрия представляет собой основу технического черчения.
В 1637 [ Cкачайте файл, чтобы посмотреть ссылку ] (1596–1650), французский философ и математик, опубликовал свою Геометрию – первый труд по аналитической геометрии, позволивший применить в геометрии мощные алгебраические методы. Геометрические задачи всех видов теперь могли решаться в рамках единого подхода; кроме того, благодаря новым методам стала возможной постановка и решение новых задач, о которых древние не могли даже помыслить, но которые ныне находятся в самом центре математики и математической физики.
Со времен первого появления Начал математики тщетно пытались доказать пятый постулат Евклида: через точку, не лежащую на прямой, можно провести только одну прямую, ей параллельную. В 19 в. было доказано, что можно построить непротиворечивую геометрию, используя все аксиомы и постулаты Евклида и отрицание постулата о параллельных, а это означало, что искомого доказательства пятого постулата не существует. Любая такая непротиворечивая геометрия получила название неевклидовой геометрии. Около 1830 Я.Бойяи (1802–1860) и [ Cкачайте файл, чтобы посмотреть ссылку ] (1792–1856) независимо друг от друга построили геометрию, использовавшую постулат, согласно которому через точку, лежащую вне прямой, можно провести много прямых, ей параллельных. В 1854 [ Cкачайте файл, чтобы посмотреть ссылку ] (1826–1866) сформулировал постулат, согласно которому через точку вне прямой невозможно провести ни одной параллельной, что дало начало т.н. римановой геометрии. Неевклидова математика расширилась и стала включать в себя тригонометрию, аналитическую и дифференциальную геометрии, охватив не только планиметрию, но и стереометрию, а также геометрию пространств размерности больше трех (геометрию гиперпространств). Евклидова и обе неевклидовы геометрии одинаково хорошо служат для описания той ограниченной области пространства, в которой мы живем, хотя геометрия Евклида проще по форме. В то же время при переходе к римановой геометрии некоторые современные физические теории существенно упрощаются.
Применение геометрии в жизни.
Геометрические знания широко применяются в жизни в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами; при изготовлении технических чертежей выполнять геометрические построения.
С помощью геометрии можно измерить высоту дерева существует несколько способов, не срубая его и не взбираясь на верхушку, при помощи весьма незамысловатых приборов и даже без всяких приспособлений. Самый лёгкий и самый древний способ – без сомнения, тот, которым греческий мудрец Фалес за шесть веков до нашей эры определил в Египте высоту пирамиды. Он воспользовался её тенью. Фалес вправе заключил что, когда его собственная тень равна его росту, солнечные лучи встречают ровную почву под углом в половину прямого, и следовательно, вершина пирамиды, середина её основания и конец её тени должны обозначить равнобедренный треугольник.

Традиционно геометрия была неразделима с астрономией. Элементарно, чтобы посчитать диаметр Луны или Солнца или же расстояние до них необходимо прибегнуть к законам геометрии. Сейчас геометрия принимает участие почти во всех инженерных дисциплинах: при построении чертежей, при моделизации механических процессов. Она принимает участие в информатике: для создания двухмерной и трехмерной анимации.
Древнегреческий ученый Эратосфен с помощью геометрии измерил длину окружности земного шара. Он обнаружил, что, когда Солнце стоит в Сиене (Африка) над головой, в Александрии, расположенной в 800 км, оно отклоняется от вертикали на 7 . Эратосфен заключил, что из центра Земли Солнце видно под углом 7 и, следовательно, окружность земного шара равна 360:7 х 800=41 140 км.
Существует сакральная геометрия (от [ Cкачайте файл, чтобы посмотреть ссылку ] sacralis  священный, обладающий святостью, признаваемый божественным)  совокупность [ Cкачайте файл, чтобы посмотреть ссылку ] и/или [ Cкачайте файл, чтобы посмотреть ссылку ] представлений о формах и пространстве мира, его [ Cкачайте файл, чтобы посмотреть ссылку ], упорядоченности, [ Cкачайте файл, чтобы посмотреть ссылку ], как геометрия форм, лежащих в основе жизни.
Сакральная геометрия отражается и в архитектуре храмов. Сложно переоценить культурное значение древних пирамид Египта, Мексики, Индии и Перу. Так и в наше время, многие ссылаются на сакральное значение [ Cкачайте файл, чтобы посмотреть ссылку ] и пропорции пирамид древнего Египта.
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]
[ Cкачайте файл, чтобы посмотреть ссылку ]














Заключение.
Геометрия – одна из самых древних наук, она возникла очень давно, еще до нашей эры. Зарождение геометрии было связано с различными измерительными работами, которые приходилось выполнять при разметке земельных участков, проведении дорог, строительстве зданий и других сооружений. В результате этой деятельности появились и постепенно накапливались различные правила, связанные с геометрическими измерениями и построениями. В дальнейшем геометрия сформировалась как самостоятельная наука, занимающаяся изучением геометрических фигур.
Данная работа важна тем, что наглядно показывает, что геометрия – это не просто школьный предмет, а наука, находящая применение в жизни. Практическое применение работы состоит в том, чтобы использовать знания и умения в решении задач по геометрии, расширении кругозора учащихся.

















Список литературы
Атанасян Л.С., Бутузов А.Ф., Кадомцев С.В. и др. Геометрия 10-11 кл. – М.: Просвещение, 2003г.
Брохгауз Ф.Б. Иллюстрированный энциклопедический словарь.-М.: Эксмо, 2006г.
Перельман Я.И. Занимательная алгебра, занимательная геометрия.-М. : АСТ, 2007г.
Демьянов В.П. Геометрия и Марсельеза. – М.: Знание, 1986.
Каган В.Ф. Очерки по геометрии. – М.: Московский университет, 1963.
Свечников А.А. Путешествие в историю математики или как люди научились считать. – М.: Просвещение, 1995.
















Ёђ H
·
·
·
·
·
·
·
·
·$I
·
·с‚
·
·
·
·
·ђ °
·
·
·
·
·
·
·
·Ђ
·
·
·
·
·
·
·
· ш
·
·
·
·щ
·
·
·
·
·
·
·
·H
·Пирамида Майя. Кукулькан"Пирамида Майя. Кукулькан" 
·

Приложенные файлы

  • doc rabota2
    Размер файла: 531 kB Загрузок: 5