Подготовка к ЕГЭ по химии. Лекция по теме «Углеводы»


Муниципальное бюджетное образовательное учреждение
Средняя общеобразовательная школа села Старобурново
муниципального района Бирский район Республики Башкортостан
Тематические лекции
по химии для 11 класса
для подготовки к ЕГЭна 2015-2016 учебный годcоставила учитель химииАсылбаева Марина Евгеньевна
Тема 20. Углеводы.
Углеводы (сахара) – органические соединения, имеющие сходное строение и свойства, состав большинства которых отражает формула
Cx(H2O)y, где x, y ≥ 3.
Общеизвестные представители: глюкоза (виноградный сахар) С6Н12О6, сахароза (тростниковый, свекловичный сахар) С12Н22О11, крахмал и целлюлоза [С6Н10О5]n.
Углеводы содержатся в клетках растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. Эти соединения образуются растениями в процессе фотосинтеза из углекислого газа и воды при участии хлорофилла. Животные организмы не способны синтезировать углеводы и получают их с растительной пищей.
Фотосинтез можно рассматривать как процесс восстановления СО2 с использованием солнечной энергии. Эта энергия освобождается в животных организмах в результате метаболизма углеводов, который заключается, с химической точки зрения, в их окислении.

Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из нескольких атомов (x = 3), до полимеров [Cx(H2O)y]n с молекулярной массой в несколько миллионов (n > 10000).
По числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
Моносахариды не гидролизуются с образованием более простых углеводов.
Олиго- и полисахариды расщепляются при гидролизе до моносахаридов. В молекулах олигосахаридов содержится от 2 до 10 моносахаридных остатков, в полисахаридах – от 10 до 3000-5000.
НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ
Моносахариды Олиго или дисахариды Полисахариды
Глюкоза
С6Н12О6
Сахароза (дисахарид)
С12Н22О11
Целлюлоза
(С6Н10О5)n
Фруктоза
С6Н12О6
Лактоза (дисахарид)
С12Н22О11
Крахмал
(С6Н10О5)n
Рибоза
С5Н10О5
Раффиноза (трисахарид)
С18Н32О16 Гликоген
(С6Н10О5)n
Дезоксирибоза
С5Н10О4 Для большинства углеводов приняты тривиальные названия с суффиксом -оза (глюкоза, рибоза, сахароза, целлюлоза и т.п.).
20.1. Моносахариды.
В природе наиболее распространены моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы).
Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных. Например:

Из этих формул следует, что моносахариды – это полигидроксиальдегиды (альдозы, альдегидоспирты) или полигидроксикетоны (кетозы, кетоноспирты).
Рибоза и глюкоза - альдозы (альдопентоза и альдогексоза), фруктоза - кетоза (кетогексоза).
Однако не все свойства моносахаридов согласуются с таким строением. Так, моносахариды не участвуют в некоторых реакциях, типичных для карбонильной группы. Одна из гидроксигрупп отличается повышенной реакционной способностью и ее замещение (например, на группу -OR) приводит к исчезновению свойств альдегида (или кетона).
Следовательно, моносахаридам, кроме приведенных формул, свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксилов.
Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы. Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме (нумерация начинается с карбонильного углерода или ближайшего к нему конца цепи).
Таким образом, в результате взаимодействия карбонильной группы с одной из гидроксильных моносахариды могут существовать в двух формах: открытой цепной (оксо-форме) и циклической (полуацетальной). В растворах моносахаридов эти формы находятся в равновесии друг с другом. Например, в водном растворе глюкозы существуют следующие структуры:

Подобное динамическое равновесие структурных изомеров называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.
Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца.
В α-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в β-глюкозе – в цис-положении.
С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

Аналогичные процессы происходят и в растворе рибозы:

В твердом состоянии моносахариды имеют циклическое строение.
Химические свойства моносахаридов
обусловлены наличием в молекуле функциональных групп трех видов (карбонила, спиртовых гидроксилов и полуацетального гидроксила).
Например, глюкоза как многоатомный спирт образует простые и сложные эфиры, комплексное соединение с гидроксидом меди (II)/NaOH:

Голубой осадок гидроксида меди растворяется, раствор бреобретает сине-фиолетовое окрашивание. Реакция идет без нагревания.
как альдегид
- она окисляется аммиачным раствором оксида серебра и гидроксидом меди (II) при нагревании:

Образуется глюконовая кислота
Глюкоза + Cu(OH)2(голубой осадок)= глюконовая кислота + Cu2O↓(кирпично-красный осадок) +H2O. Реакция идет при нагревании.
- восстанавливается водородом в шестиатомный спирт – сорбит CH2OH-(CHOH)4-CH2OH:

в полуацетальной форме глюкоза способна к нуклеофильному замещению полуацетального гидроксила на группу -OR (образование гликозидов, олиго- и полисахаридов).

Аналогично ведут себя в таких реакциях и другие моносахариды.
Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:
а) спиртовое брожение C6H12O6 →2C2H5OH + 2CO2↑
Образуется этанол
б) молочно-кислое брожение C6H12O6 → 2CH3-CH(OH)-COOH
Образуется молочная кислота
в) масляно-кислое брожениеC6H12O6 → C3H7COOH + 2CO2 + 2H2O
Образуется масляная кислота
г) лимонно-кислое брожение
C6H12O6 + O2 → HOOC-CH2-C(OH)(COOH)-CH2-COOH + 2H2O
Образуется лимонная кислота
д) ацетон-бутанольное брожение
2C6H12O6→ С4H9OH + СH3-СO-CH3 + 5CO2 + 4H2
Образуется бутанол и ацетон
В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:
C6H12O6 + 6O2 6CO2 + 6H2O + 2920 кДж
Дисахариды
Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).
Связи, соединяющие моносахаридные остатки, называются гликозидными.
Примером наиболее распространенных в природе дисахаридов является сахароза (свекловичный или тростниковый сахар). Молекула сахарозы состоит из остатков глюкозы и фруктозы, соединенных друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2)-гликозидной связью:

Сахароза, находясь в растворе, не вступает в реакцию "серебряного зеркала", так как не способна превращаться в открытую форму, содержащую альдегидную группу. Подобные дисахариды не способны окисляться (т.е. быть восстановителями) и называются невосстанавливающими сахарами.
Существуют дисахариды, в молекулах которых имеется свободный полуацетальный гидроксил, в водных растворах таких сахаров существуют равновесие между открытой и циклической формами молекул. Эти дисахариды легко окисляются, т.е. являются восстанавливающими, например, мальтоза.

В мальтозе остатки глюкозы соединены (1→ 4)-гликозидной связью.
Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды:

При гидролизе различные дисахариды расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):

Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.
Полисахариды
Полисахариды – это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.
Эти вещества составляют основную массу органической материи в биосфере Земли. В живой природе они выполняют важные биологические функции, выступая в качестве:
структурных компонентов клеток и тканей,
энергетического резерва,
защитных веществ.
Полисахариды являются продуктом реакции поликонденсации моносахаридов.
Основные представители полисахаридов – крахмал и целлюлоза – построены из остатков одного моносахарида – глюкозы. Крахмал и целлюлоза имеют одинаковую молекулярную формулу:
(C6H10O5)n,
но совершенно различные свойства. Это объясняется особенностями их пространственного строения.
Крахмал состоит из остатков α-глюкозы, а целлюлоза – из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы (выделена цветом):

С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

К важнейшим полисахаридам относится также гликоген (C6H10O5)n, образующийся в организмах человека и животных в результате биохимических превращений из растительных углеводов. Как и крахмал, гликоген состоит из остатков α-глюкозы и выполняет подобные функции (поэтому часто называется животным крахмалом).
Из химических свойств полисахаридов наибольшее значение имеют реакции гидролиза и образование производных за счёт реакций макромолекул по спиртовым ОН-группам.
Гидролиз полисахаридов происходит в разбавленных растворах минеральных кислот (или под действием ферментов). При этом в макромолекулах разрываются связи, соединяющие моносахаридные звенья - гликозидные связи (аналогично гидролизу дисахаридов). Реакция гидролиза полисахаридов является обратной процессу их образования из моносахаридов.
Полный гидролиз полисахаридов приводит к образованию моносахаридов (целюллоза, крахмал и гликоген гидролизуются до глюкозы):
(C6H10O5)n + nH2O (H+) → nC6H12O6
При неполном гидролизе образуются олигосахариды (в том числе, дисахариды).
Способность полисахаридов к гидролизу увеличивается в ряду:
целлюлоза < крахмал < гликоген
Гидролиз крахмала и целлюлозы до глюкозы ("осахаривание") и ее брожение используются в производстве этанола, молочной, масляной и лимонной кислот, ацетона, бутанола.
Образование производных (главным образом, сложных и простых эфиров) полисахаридов происходит в результате реакций по спиртовым ОН-группам, содержащимся в каждом структурном звене (3 группы ОН на одно моносахаридное звено): [C6H7O2(OH)3]n.
Такая химическая модификация полимеров не сопровождается существенным изменением степени полимеризации макромолекул
Крахмал
Крахмалом называется смесь двух полисахаридов, построенных из остатков циклической α-глюкозы.

Крахмал – основной источник резервной энергии в растительных клетках – образуется в растениях в процессе фотосинтеза и накапливается в клубнях, корнях, семенах. Это белое аморфное вещество, нерастворимое в холодной воде, в горячей воде набухает и частично растворяется, образуя вязкий коллоидный раствор (крахмальный клейстер).
Крахмал широко применяется в различных отраслях промышленности (пищевой, бродильной, фармацевтической, текстильной, бумажной и т.п.).
В состав крахмала входят:
амилоза (внутренняя часть крахмального зерна) – 10-20%
амилопектин (оболочка крахмального зерна) – 80-90%
Цепь амилозы включает 200 – 1000 остатков α-глюкозы (средняя мол.масса 160 000) и имеет неразветвленное строение.

Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев α-глюкозы.
При взаимодействии амилозы с иодом в водном растворе молекулы иода входят во внутренний канал спирали, образуя так называемое соединение включения. Это соединение имеет характерный синий цвет. Данная реакция используется в аналитических целях для обнаружения как крахмала, так и иода (иодкрахмальная проба).
Амилопектин состоит из разветвленных макромолекул, молекулярная масса которых достигает 1 - 6 млн.

Амилоза и амилопектин гидролизуются под действием кислот или ферментов до глюкозы, которая служит непосредственным источником энергии для клеточных реакций, входит в состав крови и тканей, участвует в обменных процессах. Поэтому крахмал – необходимый резервный углевод питания.
Подобно амилопектину построен гликоген (животный крахмал), макромолекулы которого отличаются большей разветвлённостью:

Целлюлоза
Целлюлоза (клетчатка) – растительный полисахарид, являющийся самым распространенным органическим веществом на Земле.
Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток. В большом количестве целлюлоза содержится в тканях древесины (40-55%), в волокнах льна (60-85%) и хлопка (95-98%). Целлюлоза используется в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, для получения гидролизного спирта и др.
Цепи целлюлозы построены из остатков β-глюкозы и имеют линейное строение.

Молекулярная масса макромолекул – от 400 000 до 2 млн.

Целлюлоза относится к наиболее жесткоцепным полимерам, в которых практически не проявляется гибкость макромолекул.
К важнейшим производным целлюлозы относятся:
- метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы
[C6H7O2(OH)3-x(OCH3)x]n (х = 1, 2 или 3);
- ацетилцеллюлоза (триацетат целлюлозы) – сложный эфир целлюлозы и уксусной кислоты
[C6H7O2(OCOCH3)3]n
- нитроцеллюлоза (нитраты целлюлозы) – сложные азотнокислые эфиры целлюлозы:
[C6H7O2(OH)3-х(ONO2)х]n (х = 1, 2 или 3).

Приложенные файлы

  • docx uglevod
    Размер файла: 336 kB Загрузок: 13