План-конспект урока на тему «Решение тригонометрических неравенств методом интервалов»


Чтобы посмотреть презентацию с оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов:

Решение тригонометрических неравенств методом интервалов 10 А класс Учитель: Ускова Н.Н. МБОУ Лицей №60 Цели урока: Образовательные: расширение и углубление знаний по теме “Метод интервалов”; обретение практических навыков выполнения заданий, используя метод интервалов;повышение уровня математической подготовки школьников;Развивающие:развитие навыков исследовательской деятельности;Воспитательные:формирование наблюдательности, самостоятельности, способности к взаимодействию с другими людьмивоспитание культуры мышления, культуры речи, интереса к учебному предмету. Ход урока Проверка домашнего задания.Самостоятельная работа.Объяснение нового материала по теме «Решение тригонометрических неравенств методом интервалов»:алгоритм решения;примеры неравенств.Итоги урока.Домашнее задание. Проверка домашнего задания Решите неравенства: Самостоятельная работа Дополнительно: 1) 2) Проверка домашнего задания Решите неравенства:а) Решение. Ответ: б) Решение. Ответ: в) Решение. Ответ: г) Решение. Ответ: . Решить неравенство Решение. Ответ: Пример 1. Решить неравенство методом интервалов Решение. 1) 2) Нули функции: 3) Знаки функции на интервалах: + - + - + 4) Так как неравенство нестрогое, то корни включаются 5) Решение: Ответ: Пример 2. Решить неравенство: Решение. Ответ: I способ: II способ: Ответ: Решение тригонометрических неравенств методом интервалов Алгоритм:С помощью тригонометрических формул разложить на множители.Найти точки разрыва и нули функции, поставить их на окружность.Взять любую точку x0 (но не найденную ранее) и выяснить знак произведения. Если произведение положительно, то поставить «+» за единичной окружностью на луче, соответствующему углу. Иначе поставить знак «-» внутри окружности.Если точка встречается четное число раз, назовем ее точкой четной кратности, если нечетное число раз – точкой нечетной кратности. Провести дуги следующим образом: начать с точки x0 , если следующая точка нечетной кратности, то дуга пересекает окружность в этой точке, если же точка четной кратности, то не пересекает.Дуги за окружностью – положительные промежутки; внутри окружности – отрицательные промежутки. Решение примеров 1) 2) 3) 4) 5) Пример 1. Решение. Точки первой серии: Точки второй серии: - - - + + + Ответ: Пример 2. Решение. Точки первой серии: Точки второй серии: Точки третей серии: Точки четвертой серии: Точки четной кратности: + + + + - - - - Ответ: Пример 3. Решение. Итого: Точки первой серии: Точки второй серии: Точки третей серии: + + + + + + - - - - - - - - Ответ. Точки четной кратности: Пример 4. Решение. + + + + - - - - Ответ. Пример 5. Решение. 1) 2) Нули функции: 3) + - - + - нулей нет Итак, при Ответ: Графически: Домашнее задание: Решить тригонометрические неравенства методом интервалов:а)б) в) г)д) е)ж) Дополнительные задания:

Приложенные файлы

  • ppt trigon1.ppt
    Размер файла: 3 MB Загрузок: 12

План-конспект урока на тему «Решение тригонометрических неравенств методом интервалов»: 1 комментарий

  1. uskova_n_n Автор записи

    Данная работа размещена на сайте учителя математики Усковой Нины Николаевны- http://uskova.moy.su/

Комментарии запрещены.