Презентация и конспект «Предмет и задачи астрономии»


Чтобы посмотреть презентацию с оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов:

«астрон» - звезда «номос» - закон Астрономия — наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем. СОЛНЦЕ И ЗВЕЗДЫ Солнце с Земли Солнечная атмосфера Рождение звезд Остаток новой звезды GK Персея ПЛАНЕТЫ Планеты - гиганты Планеты земной группы Луна Система Урана Тефея и Диона Фобос Деймос СПУТНИКИ ПЛАНЕТ Комета Хейла Боппа Комета Галлея12 марта 1986 год Метеорный поток Леониды Метеорит Богуславка, 1916 г. Россия «Марсианский» метеорит КОМЕТЫ И МЕТЕОРНЫЕ ТЕЛА Спиральная галактика М31 (Туманность Андромеды) Большое Магелланово облако Квинтет Стефана – пять близко расположенных взаимодействующих галактик ЗВЕЗДНЫЕ СИСТЕМЫ Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы. 2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел. 3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем. ЗАДАЧИ АСТРОНОМИИ Астрометрия сферическая астрономии фундаментальная астрометрии практическая астрономии Теоретическая астрономия Небесная механика Астрофизика Звездная астрономия Космогония Космология практическая теоретическая РАЗДЕЛЫ АСТРОНОМИИ ЭТАПЫ РАЗВИТИЯ АСТРОНОМИИ Древняя индийская обсерватория в Дели Величественный Стоунхендж Урания, Гевелий Геоцентрическая система мира Птолемея Гелиоцентрическая система мира Коперника Галилео Галилей Тихо Браге Иоганн Кеплер Исаак Ньютон СОВРЕМЕННЫЙ ЭТАП Солнце в различных диапазонах волн ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ – ИСТОЧНИК ИНФОРМАЦИИ Млечный путь в различных диапазонах волн Европейская южная обсерватория Ла-Силья (Чили) Башня 4,2-метрового телескопа им. В. Гершеля на о. Пальма Солнечный телескоп МакМас-Пирс ALMA (Atakama Large Millimeter Array) 64-антенный радиотелескоп миллиметрового диапазона в пустыне Атакама (Чили) Радиотелескоп РАТАН-600 Российской академии наук. Телескоп им. Хаббла ЛУНА - 3 МАГЕЛЛАН МАРС - 3 Автоматические межпланетные станции

ВВЕДЕНИЕ

1.1. Предмет и задачи астрономии

Астрономия наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем.
Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась.
Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово «астрономия» происходит от двух греческих слов: «астрон» звезда, светило и «номос» закон.

При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:
1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы. Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.
2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел. О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем лишь в последние годы.
3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем. Третья задача сложнее двух предыдущих. Для решения ее проблем накопленного наблюдательного материала пока еще далеко не достаточно, и наши знания в этой области астрономии ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

1.2. Разделы астрономии

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно.

1. Астрометрия наука об измерении пространства и времени. Она состоит из:
а) сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
б) фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звездных положений и определение числовых значений важнейших астрономических постоянных, т.е. величин, позволяющих учитывать закономерные изменения координат светил;
в) практической астрономии, в которой излагаются методы определения географических координат, азимутов направлений, точного времени и описываются применяемые при этом инструменты.
2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.
Эти три раздела в основном решают первую задачу астрономии, и их часто называют классической астрономией.
4. Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям.
5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей.
6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
7. Космология изучает общие закономерности строения и развития Вселенной.


1.3. Возникновение и основные этапы развития астрономии

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.
В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея, тем не менее, позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.
Системой мира Птолемея завершается этап развития древнегреческой астрономии.
Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.
Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др.
Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.
Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.
Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время расчетом орбит искусственных небесных тел.
Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ, и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики рентгеновской астрономии.
Значение этих достижений астрономии трудно переоценить. Запуск искусственных спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969г., США), эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.


1.4. Основа и источник астрономических исследований

Основа астрономии наблюдения. Наблюдения доставляют нам основные факты, которые позволяют объяснить то или иное астрономическое явление. Дело в том, что для объяснения многих астрономических явлений необходимы тщательные измерения и расчеты, которые помогают выяснению действительных, истинных обстоятельств, вызвавших эти явления. Так, например, нам кажется, что все небесные тела находятся от нас на одинаковом расстоянии, что Земля неподвижна и находится в центре Вселенной, что все светила вращаются вокруг Земли, что размеры Солнца и Луны одинаковы и т.д. Только тщательные измерения и их глубокий анализ помогают отрешиться от этих ложных представлений.
Основным источником сведений о небесных телах являются электромагнитные волны, которые либо излучаются, либо отражаются этими телами. Определение направлений, по которым электромагнитные волны достигают Земли, позволяет изучать видимые положения и движение небесных тел. Спектральный анализ электромагнитного излучения дает возможность судить о физическом состоянии этих тел.
Особенностью астрономических исследований является также и то, что до последнего времени у астрономов отсутствовала возможность постановки опыта, эксперимента (если не считать исследований упавших на Землю метеоритов и радиолокационных наблюдений), и все астрономические наблюдения производились только с поверхности Земли.
Однако с запуском первого искусственного спутника Земли в нашей стране в 1957 г. началась эра космических исследований, что позволило применить в астрономии методы других наук (геологии, геохимии, биологии и т.п.). Астрономия продолжает оставаться наблюдательной наукой, но недалек тот день, когда астрономические наблюдения будут производиться не только с межпланетных станций и орбитальных обсерваторий, но и с поверхности Луны или других планет.


1.5. Краткий очерк строения Вселенной

Согласно современным представлениям, полученным в результате многовековых наблюдений и исследований, строение Вселенной в основных чертах следующее.
Изученная часть пространства заполнена огромным количеством звезд небесных тел, подобных нашему Солнцу.
Звезды рассеяны в пространстве неравномерно, они образуют системы, называемые галактиками. Галактики имеют в большинстве своем эллипсоидальную и сплюснутую, чечевицеобразную форму. Их размеры таковы, что свет, распространяясь со скоростью 300 000 км/сек, проходит расстояние от одного края галактики до другого за десятки и сотни тысяч лет.
Расстояния между отдельными галактиками еще больше они в десятки раз превосходят размеры самих галактик.
Число звезд в каждой галактике огромно от сотен миллионов до сотен миллиардов звезд. С Земли галактики видны как слабые туманные пятна, и поэтому их раньше называли внегалактическими туманностями. Только в близких к нам галактиках и только на фотографиях, полученных самыми сильными телескопами, можно рассмотреть отдельные звезды.
Внутри галактик звезды распределены также неравномерно, концентрируясь к их центрам и образуя различные скопления.
Пространство между звездами в галактиках и пространство между галактиками заполнено материей в виде газа, пыли, элементарных частиц, электромагнитного излучения и гравитационных полей. Плотность вещества межзвездной и межгалактической среды очень низка. Солнце и большинство звезд и звездных скоплений, наблюдаемых на небе, образуют систему, которую мы называем нашей Галактикой; огромное количество входящих в нее слабых звезд представляется невооруженному глазу белесой полосой, проходящей через все небо и называемой Млечным Путем.
Солнце одна из многих миллиардов звезд Галактики. Но Солнце не одинокая звезда: оно окружено планетами темными телами, вроде нашей Земли. Планеты (не все) в свою очередь имеют спутников. Спутником Земли является Луна. Солнечной системе принадлежат также астероиды (малые планеты), кометы и метеорные тела.
Наука располагает данными, позволяющими утверждать, что многие звезды в нашей Галактике и звезды в других галактиках имеют планетные системы, подобные Солнечной.
Во Вселенной все находится в движении. Движутся планеты и их спутники, кометы и метеорные тела; движутся Солнце и звезды в галактиках, движутся галактики друг относительно друга. Как нет пространства без материи, так нет и материи без движения.
Основные черты строения Вселенной, описанные выше, выявлены в результате огромной работы, которая велась в течение тысячелетий. Конечно, различные части Вселенной изучены с различной полнотой. Так, до XIX в. в основном изучалась Солнечная система и лишь с середины XIX в. началось успешное изучение строения Млечного Пути, а с начала XX в. звездных систем.




Литература.
Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. Учебник. – М., Наука,1983. – 560 с.
Дагаев М.М. Астрономия. Учебник для педагогических вузов. - М., Наука, 1983. – 384 с.
Гинзбург В.Л. Современная астрофизика. - М., Наука, 1970.
Зельдович Я.Б., Новиков И.Л. Теория тяготения и эволюция звезд. – М., 1971.
Шама Д. Современная космология. Перевод с английского, М., 1973.
Астрономический календарь. Постоянная часть. – М., Наука, 1981 – 704 с.
Астрономический календарь. Переменная часть. Ежегодник., 2004 – 367 с.
Дагаев М.М. Сборник задач по астрономии (пособие для вузов). – М., 1981.
Воронцов, Вельяминов Б.А. Сборник задач по астрономии для средней школы. – М., 1981 – 56 с.
Данлоп С. Азбука звездного неба (перевод с английского). – М., Мир, 1990 – 238 с.
Пановкин Б.Н. Радиоастрономия. – М., Знание, 2003 – 64 с.
Амбарцумян Б.А. Загадки Вселенной. – М., Педагогика, 2003 – 106 с.
Дагаев М.М. Лабораторный практикум по курсу общей астрономии. – М., Высшая школа.
Программы для внешкольных учреждений, 1972 – 282 (с приложением).
Астрономия, космонавтика. – М., Просвещение, 2004 – 152 с.










13PAGE 15


13PAGE 14815





Приложенные файлы

  • ppt prezentacia
    Размер файла: 4 MB Загрузок: 16
  • doc konspekt
    Размер файла: 57 kB Загрузок: 9